Search for Θ^+ in $\mathcal{K}_{\mathcal{L}}p \to \mathcal{K}^+n$ Reaction with JLab $\mathcal{K}\mathcal{L}F$

Igor Strakovsky

The George Washington University

- KLF @ Jefferson Lab.
- Hyperon spectroscopy.
- Exotic:
 - N(1680).
 - *🛛*+(1540).
- Were we are going.
- Summary.
- A bit of history.

2/20/2024

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

Igor Strakovsky 1

Supported by DE-SC0016583

Jefferson Lab Continuous Electron Beam Accelerator Facility in 2024

1995 – **2012**... Energy 0.4 - 6.0 GeV • 200 µA, Polarization 85% • Simultaneous delivery 3 Halls – A, B, C

- 500+ PhDs completed
- On average 22 US Ph.Ds per year, roughly 25-30% of US Ph.Ds in nuclear physics
- •1530 users in FY16.
- $\sim 1/3$ international from 37 countries

....2016 -

- Energy 0.4 12.0 GeV
- 150 μA, Polarization 85%
- Simultaneous delivery 4 Halls
- FY18: First try simultaneous delivery to 4 Halls – A, B, C, D

Strange Hadron Spectroscopy with Secondary KL Beam in Hall D

Experimental Support: Shankar Adhikari⁴³, Moskov Amaryan (Contact Person, Spokesperson)⁴³, Arshak Asaturyan¹

Alexey Anisovich^{5,41}, Alexei Bazavov³⁸, Rene Bellwied²¹, Veronique Bernard¹²,
 Gilberto Colangelo³, Aleš Cieplý⁴⁶, Michael Döring¹⁹, Ali Eskanderian¹⁹, Jose Goity^{20,49},
 Helmut Haberzettl¹⁹, Mirza Hadžimehmedović⁵⁵, Robert Jaffe³⁶, Boris Kopeliovich⁵⁴,
 Heinrich Leutwyler³, Maxim Mai¹⁹, Terry Mart⁶⁵, Maxim Matveev⁴⁴, Ulf-G. Meißner^{5,29},
 Colin Morningstar⁹, Bachir Moussallam⁴², Kanzo Nakayama⁵⁸, Wolfgang Ochs³⁷,
 Youngseok Oh³¹, Rifat Omerovic⁵⁵, Hedim Osmanović⁵⁵, Eulogio Oset⁶², Antimo Palano⁶⁴,
 Jose Peláez³⁴, Alessandro Pilloni^{66,67}, Maxim Polyakov⁴⁸, David Richards⁴⁹, Arkaitz Rodas^{49,56}
 Dan-Olof Riska¹², Jacobo Ruiz de Elvira³, Hui-Young Ryu⁴⁵, Elena Santopinto²³,
 Andrey Sarantsev^{5,14}, Jugoslav Stahov⁵⁵, Alfred Švarc⁴⁷, Adam Szczepaniak^{22,49},
 Ronald Workman¹⁹, Bing-Song Zou⁴

Extensive Theoretical Support

Jefferson Lab PAC48 Report, 2020

Summary: The future K_L facility will add a new physics reach to JLab, and the PAC is looking forward to see the idea being materialized, in conjunction with the plans for Hall D as spelled out in the 2019 White Paper. The collaboration should now devote all its energy to turn this challenging project into an experimental facility and in parallel prepare for a successful data analysis.

e-Print: 2008.08215 [nucl-ex] https://wiki.jlab.org/klproject/index.php/Main_Page

2/20/2024

E12-12-19-001This Happens because of Strong Support & Dedicated Efforts ofCollaboration

2/20/2024

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

Igor Strakovsky

-5

- V project has firmly to setup secondary K_L beamline @ Jefferson Lab, with *flux* of *three order of magnitude higher* than **SLAC** had, for scattering experiments on both *proton* & *neutron* (*first* time !) targets.
- CEBAF will remain *prime facility* for fixed target electron scattering @ luminosity *frontier*. First hadronic facility @ Jefferson Lab.
- We will determine differential cross sections & self-polarization of *hyperons* with *GlueX* detector to enable precise *PWA* in order to determine *all resonances* up to 2500 MeV in spectra of *Λ**, *Σ**, *Ξ**, & *Ω**.
 To complete *SU(3)_F multiplets*, one needs no less than 48 *Λ**, 38 *Σ**, 61 *Ξ**, & 31 *Ω**
- We intend to do *strange meson spectroscopy* by studies of π -*K* interaction to locate *pole* positions in I = 1/2 & 3/2 channels.

has link to *ion-ion high energy* facilities such as \bigcirc & \bigcirc & will allow understand formation of our world in *several microseconds* after *Big Bang*. *Hyperons* are playing *leading* role to reproduce *Chemical Potential*.

2/20/2024

S. Adhikari et al, Nucl Inst Meth A 987, 164807 (2021)

• Superior *CEBAF* electron beam will enable flux on order of $10^4 K_L/sec$, which exceeds flux of that previously attained @ SLAC by *three orders* of magnitude.

Experimental Hall [GlueX Spectrometer, KFM, SC, Cryo Target]

Tagger Hall [CPS]

Collimator Cave [KPT]

$K_{\mathcal{L}}$ Momentum Determination & Resolution

• Momentum measured with TOF between SC (surrounded LH₂/LD₂) & RF from CEBAF.

• Mean lifetime of K_L is 51.16 nsec ($c\tau = 15.3$ m) whereas Mean lifetime of K^- is 12.38 nsec ($c\tau = 3.7$ m).

• For this reason, it is much easier to perform measurements of K_Lp scattering @ low beam momenta compared with K⁻p scattering.

Electron Beam Parameters

•
$$E_e = 12 \text{ GeV}$$
 I = 5 μ A
• Bunch spacing 64 ns *vs* 128 ns

Spectroscopy of Baryons

It is clear that we still need much more information about the existence and parameters of many baryon states, especially in the N=2 mass region, before this question of non-minimal $SU(6) \times O(3)$ super-multiplet can be settled.

Dick Dalitz, 1976

The first problem is the notion of a resonance is not well defined. The ideal case is a narrow resonance far away from the thresholds, superimposed on slowly varying background. It can be described by a Breit-Wigner formula and is characterized by a pole in the analytic continuation of the partial wave amplitude into the low half of energy plane. Gerhard Höhler, 1987

Why N^*s are important – The first is that nucleons are the stuff of which our world is made. My second reason is that they are simplest system in which the quintessentially non-Abelian character of QCD is manifest. The third reason is that history has taught us that, while relatively simple, Baryons are sufficiently complex to reveal physics hidden from us in the mesons.

Nathan Isgur, 2000

Baryon Sector @ PDG2022

Gweek and the second s	$A(1232)$ $3/2^+$ **** $\Delta(1600)$ $3/2^+$ **** $\Delta(1620)$ $1/2^-$ **** $\Delta(1700)$ $3/2^-$ **** $\Delta(1700)$ $3/2^-$ **** $\Delta(1900)$ $1/2^-$ ** $\Delta(1900)$ $1/2^-$ ** $\Delta(1900)$ $5/2^+$ *** $\Delta(1900)$ $5/2^+$ *** $\Delta(1900)$ $7/2^-$ ** $\Delta(1940)$ $3/2^-$ ** $\Delta(1940)$ $3/2^-$ ** $\Delta(1950)$ $7/2^+$ ** $\Delta(2200)$ $7/2^-$ * $\Delta(2200)$ $7/2^-$ * $\Delta(2200)$ $7/2^+$ * $\Delta(2200)$ $7/2^+$ * $\Delta(2300)$ $9/2^-$ ** $\Delta(2300)$ $9/2^-$ ** $\Delta(2300)$ $9/2^-$ ** $\Delta(2300)$ $9/2^-$ ** $\Delta(2400)$ $1/2^-$ *** $\Delta(2400)$ $1/2^-$ *** $\Delta(1250)$ $3/2^-$ *	R.L. Workman et a $ \begin{bmatrix} r & 1/2^+ & \cdots & r \\ r^0 & 1/2^+ & \cdots & r \\ r^- & 1/2^+ & r^- & r \\ r^- & 1/2^- & r^- & r^- \\ r^- & 1/2^- & r^- \\ r^- & 1/$	$\frac{1}{2}, \operatorname{Prog Theor Exp} = \frac{1}{2}, \frac{1}{2},$	Phys 2022, 083C01 A_c^+ 1/2 ⁺ $A_c(2595)^+$ 1/2 ⁻ $A_c(2625)^+$ 3/2 ⁻ $A_c(2625)^+$ 3/2 ⁻ $A_c(2630)^+$ 5/2 ⁺ $\Sigma_c(2400)^+$ $\Sigma_c(2455)$ 1/2 ⁺ $\Sigma_c(2520)$ 3/2 ⁺ $\Sigma_c(2520)$ 3/2 ⁺ Ξ_c^0 1/2 ⁺ Ξ_c^0 1/2 ⁺ Ξ_c^0 1/2 ⁺ Ξ_c^{-} 1/2 ⁺ Ξ_a^{-} 1/2 ⁺ Ξ_a^{-} 1/2 ⁺	<image/> <image/> <image/> <image/> <image/> <image/> <image/>
• First <i>hyperon</i> was discovered in 1950 .	A(1890) 3/2 ⁺ ···· A(200') A(200') A(2100) 7/2 ⁻ ···· A(2110) 5/2 ⁺ ···· A(2325) 3/2 ⁻ ·	Pole position	in complex ene	rgy plane	R. Koniuk & N. Isgur, Phys Rev Lett 44 , 845 (1
THE UNIVERSITY OF MELBOURNE 7.D. Hopper & S. Bisw	4(2585) ** as, Phys Rev 80 , 1	for <i>hyperons</i>	has been made	only in 2010 . Y. Qu	ing <i>et al</i> , Phys Lett B 694 , 123 (2010)

D. Hopper & S. Biswas, Phys Rev 80, 1099 (1950)

2/20/2024

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

Progress of Theoretical and Experimental Physics

80)

Road Map to Baryon Spectroscopy

World K-long Data – Ground for Hyperon Phenomenology

SAID: http://gwdac.phys.gwu.edu/

Limited number of K_L induced measurements (1961 – 1982) 2426 $d\sigma/d\Omega$, 348 σ^{tot} , & 115 *P* observables do not allow today to *feel comfortable* with *Hyperon Spectroscopy* results.

W = 1.45 - 5.05 GeV

- Limited number of K_L observables in *hyperon spectroscopy* @ present poorly constrain phenomenological analyses.
- Overall systematics of previous experiments varies between 15% & 35%.
 Energy binning is much broader than hyperon widths.
- There were **no** measurements using *polarized target*. It means that there are no *double polarized* observables which are critical for *complete experiment* program.

• We are not aware of any data on *neutron* target.

Samples of PWA Results for Current DB

H. Zhang *et al* Phys Rev C **88**, 035204 (**2013**) H. Zhang *et al* Phys Rev C **88**, 035205 (**2013**)

• Polarized measurements are *tolerable* for any *PWA* solutions.

-0.2

cost

0.2

0.6

1.0

-0.5

-1.0

-1.0

-0.6

What Can Be Learned with $K_{\mathcal{L}}$ Beam?

Impact Proposed Data using PWA

			D.C. Edwards at	2000	
				2806	
				2793	1
				2709	195
$\Sigma(2030)7/2^+$	$1981 \pm 30 \pm 30\ 350 \pm 80$	$1930\pm20\pm30\ 400\pm40$	2030±10 180±30	2686	-
				2781	
				2659	

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

nys Rev D **87**, 054506 (**2013)** Igor Strakovsky 18

N.

Summary of Hyperon Spectroscopy

 $\Sigma - 391$ Σ(1920) 5/2 σ [mb] 0.06 0.04 8 -0.02 **100** days 1.0 20 days 0.8 2000 1900 2100 1800 $\frac{7^{+}}{2}$ $\frac{3^{-}}{2}$ W [MeV] Σ $\Xi - 391$ E* sensitivity → K'A) Br(i) E*(2500) 24 E*(2030) 10-1 1.0 E*(1820) had/spec 0.8 50 150 100 200 7+ $\frac{5^{+}}{2}$ length of experiment [days]

R.G. Edwards et al, Phys Rev D 87, 054506 (2013)

- We showed that sensitivity with <u>100 days</u> of running will allow to discovery many *hyperons* with good precision.
- Why should it be done with KL beam ?

This is only realizable way to observe *s*-channel resonances having *all K_L momenta* @ once (``*tagged'' kaons*).

- Why should it be done @ Jefferson Lab? Because nowhere else in existing facilities this can be done.
- Why should we care that there are dozens of missing states ?

...The new capabilities of the <mark>12-GeV</mark> era facilitate a detailed study of baryons containing two and three strange quarks. Knowledge of the spectrum of these states will further enhance our understandina of the manifestation of QCD in the three-quark arena. 2015 Long Range Plan for Nuclear Science

Narrow Pentaquarks from $\Lambda_6 \rightarrow J/\psi p K^-$

• QCD gives rise to hadron spectrum.

2/20/2024

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

Igor Strakovsky 22

Baryon Multiplets of Eight-fold Way

- Three light quarks can be arranged in 6 baryonic families, N^* , Δ^* , Λ^* , Σ^* , Ξ^* , & Ω^* .
- Number of members in family that can exist is not arbitrary.
- If SU(3)_F symmetry of **QCD** is controlling, then:

- Seriousness of "*missing-states*" problem is obvious from these numbers.
- One needs to complete SU(3)_F multiplets.

R. Koniuk & N. Isgur, Phys Rev Lett 44, 845 (1980)

Martin Strain S

Anyone can ask Big Questions, but it is not easy to ask questions that would suggest new pathways leading to real progress of our <u>understanding</u>. Courtesy of Gerard 't Hooft, 2022

What Else?

$10 \& \overline{10} - P$ wave Multiplets

Why PDG $\mathcal{N}(1710)$ can't be Member of $\overline{10}$

R.A. Arndt et al. Phys Rev C 69, 035208 (2004)

PDG 2022 *vs* 1997 for $\mathcal{N}(1710)$

 $N(1710) 1/2^+ I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Status: ****

N(1710) POLE POSITION

REAL PART VALUE (MeV) DOCUMENT ID TECN COMMENT 1650 to 1750 (≈ 1700) OUR ESTIMATE 1605 ± 7 ROENCHEN DPWA Multichannel 1690 ± 15 ANISOVICH 17A DPWA Multichannel ¹ ANISOVICH 1697 ± 23 17A L+P $\gamma p, \pi^- p \rightarrow K\Lambda$ ² SVARC L+P $1770 \pm 5 \pm 2$ 14 $\pi N \rightarrow \pi N$ 1690 ± 20 CUTKOSKY **IPWA** $\pi N \rightarrow \pi N$ 80

-2×IMAGINARY PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 to 160 (≈ 120) OUR ESTIMA	TE			
115± 5	ROENCHEN	22	DPWA	Multichannel
155 ± 25	ANISOVICH	17A	DPWA	Multichannel
84±34	¹ ANISOVICH	17A	L+P	$\gamma p, \pi^- p \rightarrow K\Lambda$
98± 8±5	² SVARC	14	L+P	$\pi N \rightarrow \pi N$
-80±20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

• N(1710) too broad to be *member* of $\overline{10}$...

N(1710) POLE POSITION

DOCUMENT ID		TECN	COMME	٧T
ARNDT	95	DPWA	$\pi N \rightarrow$	$N\pi$
⁵ HOEHLER	93	SPED	π N \rightarrow	πN
CUTKOSKY	90	IPWA	π N \rightarrow	πN
CUTKOSKY	80	IPWA	$\pi N ightarrow$	πN
	DOCUMENT ID ARNDT ⁵ HOEHLER CUTKOSKY CUTKOSKY	DOCUMENT ID ARNDT 95 HOEHLER 93 CUTKOSKY 90 CUTKOSKY 80	DOCUMENT IDTECNARNDT95DPWAHOEHLER93SPEDCUTKOSKY90IPWACUTKOSKY80IPWA	DOCUMENT IDTECNCOMMENTARNDT95DPWA $\pi N \rightarrow$ ⁵ HOEHLER93SPED $\pi N \rightarrow$ CUTKOSKY90IPWA $\pi N \rightarrow$ CUTKOSKY80IPWA $\pi N \rightarrow$

-2×IMAGINARY PART

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT	
378	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
200	⁵ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$
88	CUTKOSKY	90	IPWA	$\pi N \rightarrow \pi N$
80 ± 20	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$

• Since 1997, *mN elastic* DB increased by significant amount

PWA for Baryons

• Originally PWA arose as technology to determine amplitude of reaction via fitting scattering data.

- ⇒ That is *non-trivial mathematical problem* looking for solution of ill-posed problem following to Hadamard & Tikhonov. [number of equations less than number of unknown quantities]
- \Rightarrow There are two main technologies to look for solution:
 - (i) *least-squares minimization* of functions which are linear in unknown parameters, χ^2 &
 - (ii) *likelihood measures goodness* of fit of statistical model.
 - [*Minimizing* χ^2 is equivalent to *maximizing* (log) likelihood just case not small statistics]
- \Rightarrow Model *independent* treatment or data *driven* treatment.
- Resonances appeared as by-product

Standard PWA

[bound states objects with definite quantum numbers, mass, lifetime, & so on].

Sir Ronald Aylmer Fisher

Narrow Resonances in PWA

R.A. Arndt, Y.I. Azimov, M.V. Polyakov, IIS, & R.L. Workman, Phys Rev. C 69, 035208 (2004)

- Because PWA (by construction) tends to *miss narrow* Res with $\Gamma < 20$ MeV
- We assume existence of Res & *refit* over whole DB
- Insertion of *narrow* Res in PWA for

Elastic case:
$$e^{2i\delta} \Rightarrow e^{2i\delta}_{R} e^{2i\delta}_{B}$$

 $e^{2i\delta}_{R} = (M_{R} - W + i \Gamma_{R}/2) / (M_{R} - W - i \Gamma_{R}/2)$

Inelastic case:
$$\eta e^{2i\delta} \Rightarrow \langle a|S|a \rangle = r_a A(W) e^{2i\delta}_R + (1 - r_a) B(W)$$

 $r_a = BR(R \rightarrow a) |A(M_R)| = 1 \qquad \Sigma r_a = 1$
 $\eta \leq 1 \Rightarrow \qquad r_a |A(W)| + (1 - r_a) |B(W)| \leq 1$

- Refitting
 - Worse description
 - \Rightarrow Res with corresponding $M_R \& \Gamma_R$ is not supported
 - Better description
 - \Rightarrow Res may exist
 - \Rightarrow Effect can be due to various corrections (*eg*, *thresholds*)
 - \Rightarrow Both possibilities can contribute
 - Some additional checks are necessary
- True Res should provide effect only in particular PW
- While Non-Res source may show similar effects in various PWs

2/20/2024

Modified $\pi N P W A$

R.A. Arndt, Y.I. Azimov, M.V. Polyakov, IIS, & R.L. Workman, Phys Rev. C 69, 035208 (2004)

2/20/2024

Modified $\pi N PWA$ for N(1680)

R.A. Arndt, Y.I. Azimov, M.V. Polyakov, IIS, & R.L. Workman, Phys Rev. C 69, 035208 (2004)

• Res contributes ~ Γ_e	el / (N	1 _R –	W), @ M ₁	$ \mathbf{R} - \mathbf{W} \gg \Gamma_{\mathbf{R}}$
• <u>Two candidates</u> :	M _R	= 1	680 MeV	1730 MeV
	$\Gamma_{\pi N}$	<	0.5 MeV	< <mark>0.3</mark> MeV
• Procedure is less ser	nsitiv	ve to	$\Gamma_{\rm tot}$	

- Character of χ^2 changes, $\Delta \chi^2$, after inserting narrow resonance with range of *masses*, *widths*, & *BRs* is illustrated.
- Negative values of $\Delta \chi^2$ emerge most readily near $M_R = 1680 \text{ MeV} \& 1730 \text{ MeV}.$
- We see that $\Delta \chi^2$ becomes negative only for $\Gamma_{el} = (\Gamma_{el} / \Gamma_{tot}) \Gamma_{tot}$ within bounds.
- Available data cannot reliably discriminate Γ_{el} below these bounds.

Θ^+ Flavor Partner, $\mathcal{N}^*(\mathcal{J}^P = 1/2^+)$

R.A. Arndt, Y.I. Azimov, M.V. Polyakov, IIS, & R.L. Workman, Phys Rev. C 69, 035208 (2004)

• Theoretical analysis is rather uncertain but nevertheless may be used for orientation

- If $\Gamma_{\Theta} \leq 0.5$ MeV, then expected structure for decays of Θ -partner N* looks as follows:
 - $\Rightarrow \Gamma(N^* \rightarrow \pi \Delta) \sim 6$ MeV [forbidden for $\overline{10}$, open due to $\overline{10}$ -8 mixing]
 - $\Rightarrow \Gamma(N^* \rightarrow \eta N) \sim 0.5 2 \text{ MeV}$
 - $\Rightarrow \Gamma(N^* \rightarrow K\Lambda) \sim 0.5 1.5 \text{ MeV}$
 - $\Rightarrow \Gamma(N^* \rightarrow \pi N) \sim 0.3 0.5$ MeV [non-trivial cancellation due to mixing is required]
 - $\Rightarrow \Gamma(N^* \rightarrow \pi \pi N)$ [out of $\pi \Delta$] ?
 - $\Rightarrow \Gamma(N^* \rightarrow K\Sigma)$ is small ?
 - $\Rightarrow \Gamma(N^* \rightarrow \text{all}) \sim 10 \text{ MeV } [\Gamma_{\pi N} / \Gamma_{\text{tot}} \leq 10 \%]$ Ratio of modes πN and ηN is sensitive to mixing

η Photoproduction from

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

2/20/2024

$\pi^- p \rightarrow \eta n$ above SAID $\pi N P W A$ ability

2/20/2024

2/20/2024

Prehistory of Search for Exotic - I

2/20/2024

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

Igor Strakovsky 38

Prehistory of Search for Exotic - II

Bubble Chamber: $\mathcal{K}^+p \rightarrow p\mathcal{K}^0X$

Unclaimed !

First Experimental Evidences for Θ^+

• Some theorists were trying to teach experimentalists how to do analysis of data

We use a theoretical model of the $\gamma d \rightarrow K^+ K^- np$ reaction adapted to the experiment done at I \swarrow S where a peak was observed and associated with the $\Theta^+(1540)$ pentaquark. The study shows that the method used in the experiment to assign momenta to the undetected proton and neutron, together with the chosen cuts, necessarily creates an artificial broad peak in the assumed K^+n invariant mass in the region of the claimed $\Theta^+(1540)$, such that the remaining strength seen for the experimental peak is compatible with a fluctuation of 2σ significance.

A. Martinez Torres & E. Oset, Phys Rev Lett, **105**, 092001 (**2010**)

2/20/2024

Standard KN PWA

$\Delta \chi^2$ due to Insertion of Res into Different Waves RA Andt, IIS, & R.L. Workman, Phys Rev C 68, 042201(R) (2003)

For I = 0:

- only one partial wave (P_{01}) admits effect near 1545 MeV: resonance, $\Gamma < 0.5$ MeV
- other partial waves $(S_{01} \& P_{03})$ may have the effect only by accompanied by other corrections

 $\mathcal{K}^+d \longrightarrow \mathcal{K}^0pp \text{ for } \mathcal{I}_{\mathcal{I}}$

J.K. Ahn & S.H. Kim, J. Korean Phys. Soc. 82, 579 (2023).

We propose to search for Θ^+ in $K^+d \to K^0pp$ reaction at $p_{K^+}=0.5$ GeV/c at β_{PPHC} . A large acceptance Hyperon Spectrometer, which consists mainly of a time projection chamber and a 1-T superconducting magnet, will exclusively measure the decay products of Θ^+ , such that $\Theta^+ \to K^0p$, followed by $K^0 \to \pi^+\pi^-$, with a mass resolution of 1 MeV at M_{Θ} . We investigated the feasibility of the proposed experiment using a Monte Carlo simulation. As a result, we expect to collect five orders of magnitude Θ^+ events, assuming a cross section of 300 μ b in 15-day beam time at β_{PPHC} .

If Θ^+ does not Survive, `Damned' Questions Revive:

• Why are there no strongly bound exotic states..., like those of two quarks and two antiquarks or four quarks and one antiquark?

H. Lipkin, Phys Lett **45B**, 267 (**1973**)

• ...either these states will be found by experimentalists, or our confined, quark-gluon theory of hadrons is as yet lacking in some fundamental, dynamical ingredient which will forbid the existence of these states or elevate them to much higher masses.

R. Jaffe & K. Johnson, Phys Lett 60B, 201 (1976)

Where We are Going

Beam Time Approved by PAC48

• Expected cornucopia of differential cross sections of different reactions with LH_2 & below W = 2.5 GeV for 100 days of beam time:

	For dσ/dΩ	
Reaction	Statistics	
	(events)	
$K_L p \to K_S p$	2.7M	
$K_L p \to \pi^+ \Lambda$	7M	
$K_L p \to K^+ \Xi^0$	2M	For P, statistics is 0.2M
$K_L p \to K^+ n$	60M	
$K_L p \to K^- \pi^+ p$	7M	

- There are no data on ``neutron" targets &, for this reason, it is hard to make realistic estimate of statistics for K_Ln reactions.
 If we assume similar statistics as on ``proton" target, full program will be completed after running 100 days with LH₂ & 100 days with LD₂ cryo targets.
- Expected systematics for $d\sigma/d\Omega$ is 10% or less.

Jefferson Lab Hall D Tentative Schedule

Safety Pauses Shifted Upcoming Schedule Out By Two Months And Is Not Yet Shown On This Figure.

Courtesy of Doug Higinbotham, Sept 2023

2/20/2024

We may have cornucopia of many missing/new strange states.

To complete $SU(3)_F$ multiplets, one needs no less than $48 \Lambda^*$, $38 \Sigma^*$, $61 \Xi^*$, & $31 \Omega^*$

• Discovering of *``missing*" hyperon states would assist in advance our understanding of formation of baryons from *quarks* & gluons microseconds (!) after Big Bang.

Our expectation is to get **1** missed/new *hyperon* per **1** day.

• In *Strange Meson Spectroscopy*, *PWA* will allow to determine excited K* states including *scalar* $K^*(700)$ states.

A bit of History

CP-violation (1964)

Hot topic!

(1)

(2)

0.9

Curve (1) gives the Born approximation. Curve (2) is obtained

cos Ocm FIG. 3. Center-of-mass differential cross section at 10 BeV.

0.85

0.8

(3)

0.95

VOLUME 138, NUMBER 5B

7 JUNE 1965

Photoproduction of Neutral K Mesons^{*}

S. D. DRELL AND M. JACOB[†]

Stanford Linear Accelerator Center, Stanford University, Stanford, California (Received 6 January 1965)

Photoproduction of a neutral K-meson beam at high energies from hydrogen is computed in terms of a K* vector-meson exchange mechanism corrected for final-state interactions. The results are very encouraging for the intensity of high-energy K2 beams at high-energy electron accelerators. A typical magnitude is 20 µb/sr for a lower limit of the K^o photoproduction differential cross section, at a laboratory peak angle of 2°, for 15-BeV incident photons.

50 µb/sr

0.05

0.04

0.03

0.02

0.0

nb/STERADIAN

Our motivation in carrying out this calculation is to emphasize the strong suggestion that an intense "healthy" K2 beam will emerge from high-energy electron accelerators (SLAC in particular) and will be available for detailed experimental studies.

Courtesy of Mike Albrow, KL2016

2/20/2024

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024ⁿ as directly obtained from 80^r 514 as y 15 for the form 80

A bit of History

The possibility that useful K, beam could be made @ electron synchrotron by photoproduction was being considered, & 1965 prediction for SLAC by Drell & Jacob was optimistic.

Sci-Tech DARESBURY

Nuclear Physics B23 (1970) 509-524, North-Holland Publishing Company 8.B.5

PHOTOPRODUCTION OF K^o MESONS

FROM PROTONS AND FROM COMPLEX NUCLEI

M. G. ALBROW[‡], D. ASTON, D. P. BARBER, L. BIRD^{‡‡}, R. J. ELLISON, C. HALLIWELL, A. E. HARCKHAM 111,

F. K. LOEBINGER, P. G. MURPHY, J. WALTERS II and A. J. WYNROE Schuster Laboratories, The University of Manchester,

Manchester M13 9PL

From: Mike Albrow **To**: Igor Strakovsky

Dear **Igor**, *That is excellent news, thank you for letting me know. In one of those strange coincidences, my professor at Manchester* who had the idea for our K0 photoproduction experiments and led the program, **Paul Murphy** (Manchester Univ.) died on Wednesday Aug 26. He was 89.

I had told him about your plans, he was still interested. He would have been happy to know that **50** years later you are benefitting from his idea.

Best. Mike (I am doing well, thank you)

PS: If your proposal was accepted on **Aug 26***th let me know, it* would be strange synchronicity!

8.B.6

R. F. TEMPLEMAN Daresbury Nuclear Physics Laboratory, Daresbury, Near Warrington, Lancs.

Received 16 July 1970

Study photoproduction as means of making clean KO beams & their decays & later, interactions.

Joint Seminar HEPD-THD, PNPI, Gatchina, Russia, February 2024

