

Проект нового многофункционального детектора на LHC Физическая программа и дизайн экспериментальной установки

Е. Крышень 19.01.2021

План

- Текущий апгрейд ALICE (для рана 3 и 4)
- Планируемый апгрейд ITS для рана 4
- Дизайн новой экспериментальной установки ALICE 3 для рана 5 и далее
- Планируемая физическая программа для ALICE 3

2019	2020	2021	2022	2023	2024	2025	2026	2027
JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	J FMAMJ J ASOND	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND
Long Shutdown 2 (LS2)		R	un 3		Long Sł	nutdown 3 (LS3	3)	

ALICE Upgrade for Run3 and 4

Record minimum-bias Pb-Pb data at > 50kHz (currently ~ 1 kHz) (RUN3+RUN4): 13/nb \rightarrow x 100 minimum bias statistics (compared to RUN1+RUN2)

ITS upgrade

6 слоев (<mark>39mm</mark> < r < 440mm) -1 ≤ η ≤ 1

7 слоев (22mm < r < 400mm) -1.3 ≤ η ≤ 1.3

Мотивация:

- Улучшение разрешения для вершин и треков с малыми импульсами
- Увеличение скорости считывания

- ITS2 основан на технологии монолитных активных пиксельных сенсоров (MAPS = Monolitic Active Pixel Sensors)
- Активная площадь ~10 м²
- 12.5х10⁹ пикселей
- Разрешение ~5 µm
- Потребляемая мощность < 40mW / cm²
- Шум ~ 1 Hz/cm²
- X/X₀ (первые три слоя): 0.35%

ITS1 vs ITS2

Тенденции в индустрии

Magnus Mager at the 1st ALICE 3 workshop

Source: R. Fontaine, IISW 2019, USA

За технологией MAPS стоит большая индустрия

Применение MAPS в экспериментах

Magnus Mager at the 1st ALICE 3 workshop

... several experiments have selected CMOS APS (STAR, ALICE, CBM, NICA MPD, sPHENIX, Mu3e)

... and now intense R&D ongoing for HL-LHC (ATLAS) and ILC/CLIC

Технлогия «созрела» для широкого применения в HEP… по крайней мере в тех областях, где радиационные требования не такие жесткие, как в ATLAS/CMS

ALPIDE – ALICE Plxel DEtector

524 288 pixels

3 cm

-

1.5 cm

Magnus Mager at the 1st ALICE 3 workshop

er.

ALPIDE: основные характеристики

- Сотни транзисторов на один пиксель
- Высокая гранулярность
 - O(30x30 um), скалируемая с технологией
- Высокая эффективность
- Радиационная устойчивость
- Подтверждена работа в больших приложениях
 Низкий уровень шума
- Стандарт индустрии можно просто купить
- В ALICE хороший опыт

Magnus Mager at the 1st ALICE 3 workshop

Радиационная длина внутренних слоев ITS2

Magnus Mager at the 1st ALICE 3 workshop

- Некоторые наблюдения:
 - Кремний: только 15% от полной радиационной длины
 - Неравномерности связаны с поддерживающей структурой и водяным охлаждением
- Можно ли убрать водяное охлаждение?
 - Да, если потребляемая мощность будет ниже 20мВт/см²
- Можно ли убрать печатную плату (питание и данные)?
 - Да, можно интегрировать всё на чипе
- Что делать с поддерживающей структурой?

Чип можно изогнуть!

Концепция детектора ITS3 для Run4

Beam pipe Inner/Outer Radius (mm)	16.0/16.5			
IB Layer Parameters	Layer 0	Layer 1	Layer 2	
Radial position (mm)	18.0	24.0	30.0	
Length (sensitive area) (mm)	300			
Pseudo-rapidity coverage	±2.5	±2.3	±2.0	
Active area (cm ²)	610	816	1016	
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94	
Number of sensors per layer	2			
Pixel size (µm²)	O (10 x 10)			

Технология сшивания (stitching) позволяет делать чипы размером с кремниевую пластину (диаметр до 30 см)

LoI: <u>https://cds.cern.ch/record/2703140</u> Endorsed by LHCC on Sep 2019

Тесты с изогнутыми чипами

Magnus Mager at the 1st ALICE 3 workshop

- Пока со стандартным ALPIDE (50 мкм)
- Прототип:
 - три слоя с проектными радиусами (18, 24, 30 мм)
 - 6 точек
 - окошко: только чипы без дополнительного материала

Спецификация для ITS3 (Run 4)

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 μm	20-40 μm
Pixel size	27 x 29 μm	O(10 x 10 µm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	~ 5 μs	~ 200 ns
Time resolution	$\sim 1 \ \mu s$	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)
Detection efficiency	>99%	>99%
Fake hit rate	< 10 ⁻⁷ event/pixel	< 10 ⁻⁷ event/pixel
NIEL radiation tolerance	$\sim 3 \times 10^{13} 1 \text{ MeV } n_{eq}/\text{cm}^2$	$10^{14} 1 \text{ MeV } n_{eq}/cm^2$
TID radiation tolerance	3 MRad	10 MRad

TowerJazz 180 nm (20 cm wafers) -> TowerJazz 65 nm (30 cm wafers)

- Можно сделать чип длиной 28 см одного чипа достаточно на всю длину
- Более высокая интеграция
- Более низкое энергопотребление
- Меньшая стоимость на квадратный метр

Что делать дальше?

- Программа эксперимента ALICE одобрена только до конца Run 4
- Дальнейшее увеличение светимости невозможно из-за ограничений ТРС: объемный заряд (искажения до 10 см) и плотность треков (загрузка до 40% на внутренних областях)
- Что делать после 2030 года?

Next-generation heavy ion experiment (ALICE 3)

Идея: полностью силиконовый детектор

- Монолитные слои MAPS (разрешение ~3µm)
- Очень маленькая радиационная длина: 0.05% X₀/слой
- Большой аксептанс |η| < 4
- Трекинг до очень малых р_т (от 20-30 МэВ)
- PID: TOF (20 пс), shower-pixel detector
- Светимости в 50 раз больше по сравнению с Run3-4: <L_{NN}> до 10³⁴ сm⁻²s⁻¹
- Основные цели:
 - Фотонные и дилептонные спектры при ультрамалых поперечных импульсах
 - Детальные исследования очарованных и экзотических барионов: X(3872), Ξ_{cc} и т.д.

Основные ссылки:

- Eol: A next-generation LHC heavy-ion experiment. 1902.01211
- Workshop on ALICE 3: <u>https://indico.cern.ch/event/953710/</u>

Оптимизация трекера

е

 p_{τ} (GeV/c)

е

η = 0

B = 0.2 T

B = 0.5 T

10

 p_{τ} (GeV/c)

 10^{2}

- Разрешение по импульсу зависит от:
 - Магнитного поля (В ~ 0.2 0.5 T)
 - Разрешения детектора (~5 мкм)
 - Многократного рассеяния (X/X₀ ~ 0.1% на слой)
- При малых магнитных полях многократное рассеяние доминирует

Первый слой

Разрешение по прицельному параметру зависит от радиуса первого слоя:

- $\propto r_0 \cdot \sqrt{X/X_0}$ (in m.s. dominated regime)
- $\propto \sqrt{C + r_0/R}$ (in resolution dominated regime)

Минимальный радиус определяется требованиями LHC:

- статический: ~ 15 мм (требование при инжекции)
- убирающийся: ~ 5 мм (требование для стабильных пучков) Несколько сценариев:
- r₀ = 15 mm, 0.15 X/X₀ (static design outside of 500 um Be beam pipe)
 r₀ = 15 mm, 0.04 X/X₀ (static design in secondary vacuum separated by 150 um Be foil)
- r₀ = 5 mm, 0.04 X/X₀ (retractable design in secondary vacuum separated by 150 um Be foil)
- Scenario 3

Scenario 4

 r₀ = 5 mm, 0 X/X₀ (retractable design in primary vacuum)

Убирающийся (retracktrable)первый слой: Iris tracker

R. Preghenella, C. Gargiulo at the 1st ALICE 3 workshop

Трекинг в области больших быстрот

- Новый маленький «теплый» соленоид
- Новый маленький «теплый» соленоид + диполь

10

 p_{τ} (GeV/c)

 10^{-2}

 10^{-1}

500 µm silicon discs (0.5% X_o), 5 µm resolution

PID: Времяпролетный детектор

- На маленькой длине пролета (1м) требуется хорошее разрешение по времени TOF ~ 20 пс
- Проблема: при больших полях электроны не долетают до внешнего слоя
- Возможные решения:
 - B = 0.2 T, 1 слой ТОГ на 100 см
 - B = 0.5 T, 2 слоя ТОГ на 20 и 100 см

Low Gain Avalanche Diode

LGAD (Low Gain Avalanche Diode)

- Технология, предложенная для LS3 апгрейда в ATLAS и CMS
- Высокая радиационная устойчивость (10¹⁴ 10¹⁵ 1 MeV n_{eq}/cm²)
- Не очень хорошая гранулярность O(1 mm²)
- Большая мертвая зона
- Тонкий слой допинга плохой контроль усиления

- Стоимость ~ 50 CHF/cm²
- Можно ли сделать ТОF сенсоры с использованием стандартной КМОП технологии?
- Возможно SPADs (Single photon avalanche diods), но
 - Шум порядка 100kHz/mm²

RICH и Pixel Shower Detectors

• ТОГ для детектирования черенковских фотонов?

Физическая программа

• Адроны с тяжелыми кварками

- Адроны с несколькими с кварками: Ξ_{cc} , Ω_{cc} , Ω_{ccc}
- Точные измерения с В мезонами при малых р_т
- Х, Ү, Z резонансы, например Х(3872)
- Спектр диэлектронов
 - Точные измерения теплового спектра 0 < m < 3 ГэВ
- Мягкие прямые фотоны
 - До 50 MeV/c
- Ультра-мягкие фотоны
 - $1 \text{ MeV/c} < p_T < 100 \text{ MeV/c}$
 - форвардный спектрометр at 3.5 < |η| < 5
- Физика за пределами СМ

Механизм адронизации

Восстановление киральной симметрии

Тепловое излучение от КГП

Проверка теорем о мягких фотонах

Регенерация чармония

Статистическая модель адронизации (SHM – Statistical Hadronization model)

- uds большой канонический ансамбль
- Рожденные с-кварки термализуются
- Удобно использовать с макроскопическими гидродинамическими моделями

$$N_{h}^{\text{stat}} = V_{H} \frac{g_{h}}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{\gamma_{c}^{-n} e^{E_{h}/T_{H}} \pm 1}$$

Коалесцентная модель (TAMU)

- Расчет вероятности перекрытия волновых функций с кварков
- Зависит от функций Вигнера
- Можно использовать в транспортных моделях

$$N_{\psi} = g_{\psi} \int p_c \cdot d\sigma_c p_{\bar{c}} \cdot d\sigma_{\bar{c}} \frac{d^3 \vec{p}_c}{(2\pi)^3 E_c} \frac{d^3 \vec{p}_{\bar{c}}}{(2\pi)^3 E_{\bar{c}}} f_c(r_c, p_c) f_{\bar{c}}(r_{\bar{c}}, p_{\bar{c}}) W_{\psi}(r_c, r_{\bar{c}}; p_c, p_{\bar{c}}) W_{\psi}(r_c, r_{\bar{c}}$$

S. Cho at the 1st ALICE 3 workshop

Рождение барионов с несколькими с-кварками

- Образование Ω_{ссс} в рр сильно подавлено (нужно 3 жестких процесса с образованием с кварков)
- В центральных PbPb рождается порядка 100 сс пар
- Вероятность образования в АА в результате коалесценции больше на несколько порядков (x30000 в SHM)

G. Innocenti at the 1st ALICE 3 workshop

Peter Braun-Munzinger at the 1st ALICE 3 workshop

Ω_{ccc} - вызов для экспериментаторов

Требуется очень хорошее разрешение, чтобы отделить сигнальные и фоновые пи-мезоны:

+ оптимизация стратегии отбора

+ ресурсы СРU для восстановления вторичных вершин

X(3872)

Основные цели:

- Изучение природы Х(3872)
- Изучение механизма адронизации

G. Innocenti at the 1st ALICE 3 workshop

Теорема Лоу

- Лоу 1958: амплитуда излучения дополнительного фотона связана с амплитудой без излучения фотона в пределе Е_γ→ 0
- Прямое следствие калибровочной инвариантности в КТП

$$M(p_1p_2; p_3p_4k) = M_0(p_1p_2; p_3p_4) \left(\frac{e_1p_1 \cdot \varepsilon}{(p_1 - k)^2} + \frac{e_3p_3 \cdot \varepsilon}{(p_3 + k)^2}\right)$$

• Обобщение на случай N частиц в конечном состоянии:

 $M(p_1p_2; p_3p_4...p_Nk) = M_0(p_1p_2; p_3p_4...p_N) \left[\sum_{i=1}^{N+2} \frac{\eta_i e_i p_i \cdot \varepsilon}{2p_i \cdot k} \right] \qquad \frac{dN_{\gamma}}{d^3k} = \frac{\alpha}{2\pi k_0} \int d^3p_3 d^3p_4...d^3p_N \sum_{i,j=1}^{N+2} \frac{\eta_i \eta_j e_i e_j (p_i \cdot p_j)}{4(p_i \cdot k)(p_j \cdot k)} \frac{dN_{\text{hadron}}}{d^3p_3 d^3p_4...d^3p_N} = \frac{\alpha}{2\pi k_0} \int d^3p_3 d^3p_4...d^3p_N \sum_{i,j=1}^{N+2} \frac{\eta_i \eta_j e_i e_j (p_i \cdot p_j)}{4(p_i \cdot k)(p_j \cdot k)} \frac{dN_{\text{hadron}}}{d^3p_3 d^3p_4...d^3p_N} = \frac{\alpha}{2\pi k_0} \int d^3p_3 d^3p_4...d^3p_N \sum_{i,j=1}^{N+2} \frac{\eta_i \eta_j e_i e_j (p_i \cdot p_j)}{4(p_i \cdot k)(p_j \cdot k)} \frac{dN_{\text{hadron}}}{d^3p_3 d^3p_4...d^3p_N}$

• Грибов 1967: при каких условиях фотоны дают большой вклад

$$p_i \cdot k = p_{i0}k(1 - \cos\theta) = p_{i0}k\frac{\theta^2}{2} = p_{i0}k_T\frac{\theta}{2}$$
 - мал, т.е. малые k_т и углы θ

Экспериментальные результаты по мягким фотонам

100

Результаты DELPHI по мягким фотонам

- ee $\rightarrow \mu\mu$ + n γ
 - нет расхождения с предсказаниями
 - первое наблюдение «мертвого» к
- $ee \rightarrow Z \rightarrow jets + n\gamma$
 - Расхождение с предсказаниями в 4 раза
 - Рост значительно быстрее с ростом множественности нейтральных частиц
 - Превышение для р_т^ү < 100 МэВ
 - Превышение в основном для малых полярных углов относительно направления струи η_v > 2

Как регистрировать мягкие фотоны?

K. Reygers at the 1st ALICE 3 workshop

Рассеяние света на свете в UPC

- Измерения рассеяние света на свете в ATLAS и CMS подтверждение предсказаний СМ
- Получены ограничения на ALPs (axion-like particles, аксионо-подобные частицы) в области масс m_a > 5 ГэВ
- Можно ли продвинуться в область малых масс?
 - экспоненциальный рост сечения $\gamma\gamma \to \gamma\gamma$
 - основная проблема фон от фоторождения π⁰ пар
 - хорошие перспективы для $\gamma\gamma \to \gamma\gamma$ измерений в области масс 2< m_{$\gamma\gamma$} <5 ГэВ и m_{$\gamma\gamma$} <0.2 ГэВ
 - возможность ограничений на ALPs в промежуточной области

Измерение магнитного момента тау-лептона

Заключение

- ALICE 3 следующий шаг в области физики тяжелых ионов
 - революционная технология
 - увеличение светимости в 50 раз по сравнению с ожиданиями Run3-4
- Богатая физическая программа
 - электроны, фотоны, малые импульсы, мультиочарованные адроны
- Lol к концу 2021 года, первые данные в 2031 году
- Предложения по физической программе и дизайну детектора?
- Участие ПИЯФ в этом эксперименте?