Фоторождение векторных мезонов в ультрапериферических столкновениях ядер на БАК и эффект ядерных экранировок

В. А. Гузей

Петербургский Институт Ядерной Физики, НИЦ "Курчатовский Институт"

По циклу работ в соавторстве с М.Б. Жаловым, Е. Крышенем, М.И. Стрикманом, Л.Л. Франкфуртом (университет штата Пенсильвания, США)

Семинар ОФВЭ, ПИЯФ, 06.04.2021

План семинара

- Ультрапериферические столкновения ионов
- Явление ядерной экранировки, модель Грибова-Глаубера
- Упругие (Глаубер) и неупругие (Грибов) ядерные экранировки в когерентном фоторождении ρ мезонов в УПС ядер свинца на БАК
- Когерентное фоторождение J / ψ в УПС ядер свинца на БАК и ядерные глюонные экранировки

Ультрапериферические столкновения

- Ультрапериферические столкновения (УПС) ионов: взаимодействие при больших прицельных параметрах $b \gg R_{A}+R_{B} \rightarrow$ адронное взаимодействие подавлено \rightarrow взаимодействие за счет обмена квази-реальными фотонами, т.н. приближение эквивалентных фотонов Вайцзеккера-Вильямса, Budnev, Ginzburg, Meledin, Serbo, Phys. Rept. 15 (1975) 181

- УПС позволяют изучать фотонфотонные и фотон-ядерные взаимодействия при беспрецедентно высоких энергиях (energy frontier) \rightarrow достигаются инвариантные энергии вплоть до $\mathrm{W}_{\text {гр }}=5$ Тэв, $\mathrm{W}_{\gamma \mathrm{A}}=700$ Гэв, $\mathrm{W}_{\gamma r}=4.2$ Тэв

a

b

C

Ультрапериферические столкновения (2)

- Широкий круг изучаемых процессов в рамках Стандартной модели (СМ) и новой физики.
- γ р и γ А рассеяние \rightarrow открытые вопросы структуры адронов в КХД:
- глюонные плотности при малых х в протоне до хр ~ 10-6 и ядрах до хА ~ 6×10^{-4} из эксклюзивного фоторождения чармониев
- поиск признаков насыщения глюонной плотности при малых х в этих процессах
- обычные и дифракционные глюонные и кварковые распределения в ядрах при $0.005<x_{A}<0.5$ из фоторождения $2 x$ струй
- поиски оддерона в рАУПС
- уточнение моделей адронной структуры фотона и механизма ядерной экранировки из фоторождения ρ мезонов на ядрах
- $\gamma \gamma$ рассеяние \rightarrow поиски новой физики:
- в сечение дают вклад как частицы СМ так и векторные фермионы, аксионоподобные частицы (ALP), магнитные монополи
- аномальное четверное взаимодействие калибровочных бозонов из $\gamma \gamma \rightarrow$ W+W-
- дипольный момент τ, суперсимметрия из $\gamma \gamma \rightarrow \tau+\tau$ -

Фоторождение векторных мезонов в УПС

- В эксперименте УПС характеризуются отсутствием активности в детекторе кроме 2 x лептонных (пионных) треков от распада $\mathrm{J} / \psi(\rho)$

- Дополнительное условие: отсутствие или малое число форвадных нейтронов в калориметрах нулевого угла (ZDC).
- Когерентное (без развала ядра) рассеяние определяется из зависимости сечения от поперечного импульса лептонной (пионной) пары рт.
- Число событий прошедших отбор в ALICE при у~0:
- ρ : ~ 7000 (Run 1), $\sim 6 \times 10^{4}$ (Run 2), 5.5×10^{9} (Run 3-4)
- J/ $\%: \sim 500$ (Run 1), ~4000 (Run 2), 1.1×10^{6} (Run 3-4)

Фоторождение векторных мезонов в УПС (2)

- В УПС каждый ион служит как источником фотонов, так и мишенью \rightarrow сечение дается суммой $2 x$ членов:

- Фотонный поток из КЭД + подавление сильного взаимодействия при малых b. Часто используют приближенное выражение:
$N_{\gamma / A}(y)=\frac{2 Z^{2} \alpha_{\mathrm{e} . \mathrm{m} .}}{\pi}\left[\zeta K_{0}(\zeta) K_{1}(\zeta)-\frac{\zeta^{2}}{2}\left(K_{1}^{2}(\zeta)-K_{0}^{2}(\zeta)\right)\right]$

$$
\begin{array}{r}
\zeta=\omega b_{\min } / \gamma_{L} ; \omega=\left(M_{V} / 2\right) e^{y} \\
b_{\min } \approx 2 R_{A}
\end{array}
$$

- виртуальность фотонов $Q^{2} \sim 1 /\left(R_{A}\right)^{2}$
- интенсивность потока ~ Z2
- максимальная энергия фотонов $\sim \gamma$ ц

Ядерная экранировка

- Ядерная экранировка = подавление сечения на ядрах по сравнение с суммой сечений на нуклонах $\sigma_{A}<A \sigma_{N}$.
- Наблюдается при рассеянии различных налетающих частиц ($\mathrm{p}, \pi, \gamma, \gamma^{*}, \mathrm{v}$) при высох энергиях (> 1 ГэВ).
- Объясняется деструктивной интерференцией амплитуд для взаимодействия с $1,2,3, \ldots$ А нуклонами ядра \rightarrow нуклоны на задней поверхности ядра испытывают поток, ослабленный (экранированный) передними нуклонами $\rightarrow \sigma_{\mathrm{A}} \sim \mathrm{A}^{2 / 3}$
- Классический пример: полное пион-дейтронное сечение

impulse approximation
$\sigma_{\mathrm{tot}}^{\pi D}=2 \sigma_{\mathrm{tot}}^{\pi N}-2 \int d \vec{k}^{2} \rho\left(4 \vec{k}^{2}\right) \frac{d \sigma_{\mathrm{diff}}^{\pi N}(\vec{k})}{d \vec{k}^{2}}$
Ядерный форм-фактор

shadowing correction

Пион-нуклонное дифр. сечение с учетом упругого

elastic intermediate state, Glauber (1955) inelastic intermediate state, Gribov (1969)

Модель экранировок Грибова-Глаубера

- Связь ядерной экранировки с дифракционным сечением можно обобщить на случай рассеяния фотонов на тяжелых ядрах.
- Поправка с полному γ А сечению, Karmanov, Kondratyuk, JETP Lett. 18 (1973) 266; Kaidalov et al, EPJ C 5 (1998) 111; Piller, Weise, Phys. Rept. 330 (2000) 1

$$
\begin{aligned}
\delta \sigma_{\gamma^{*} \mathrm{~A}}= & -8 \pi \int \mathrm{~d}^{2} b \int_{-\infty}^{+\infty} \mathrm{d} z_{1} \int_{z_{1}}^{+\infty} \mathrm{d} z_{2} \rho_{\mathrm{A}}\left(\boldsymbol{b}, z_{1}\right) \rho_{\mathrm{A}}\left(\boldsymbol{b}, z_{2}\right) \\
& \times\left.\int_{4 m_{\pi}^{2}}^{W^{2}} \mathrm{~d} M_{\mathrm{X}}^{2} \cos \left[\left(z_{2}-z_{1}\right) / \lambda\right] \frac{\mathrm{d}^{2} \sigma_{\gamma^{*} \mathrm{~N}}^{\mathrm{diff}}}{\mathrm{~d} M_{\mathrm{X}}^{2} \mathrm{~d} t}\right|_{t \approx 0} \exp \left[-\frac{\sigma_{\mathrm{XN}}}{2} \int_{z_{1}}^{z_{2}} \mathrm{~d} z \rho_{\mathrm{A}}(\boldsymbol{b}, z)\right]
\end{aligned}
$$

- Сечение перерассеяния:

$$
\sigma_{\mathrm{eff}}=\left.\frac{16 \pi}{\sigma_{\gamma N}\left(1+\eta^{2}\right)} \int_{4 m_{\pi}^{2}}^{W^{2}} d M_{X}^{2} \frac{d^{2} \sigma_{\gamma^{*} N}^{\mathrm{diff}}}{d M_{X}^{2} d t}\right|_{t \approx 0}
$$

- Учет дифракции фотонов в малые и большие массы $\gamma+\mathrm{p} \rightarrow \mathrm{X}(\mathrm{Mx})+\mathrm{p}$ ведет к успешному описанию данных на фиксированных ядерных МИШеНЯХ, Adeluyi, Fai, PRC 74 (2006) 054904

Упругие экранировки в фоторождении р

- Комбинируя с моделью векторной доминантности (VMD) для перехода γ-р можно вычислить сечение когерентного фоторождения ρ на ядрах, Bauer, Spital, Yennie, Pipkin, Rev. Mod. Phys. 50 (1978) 261
- Традиционно учитывается только упругое промежуточное состояние (упругое перерассеяние ρ) \rightarrow модель Глаубера
$\sigma_{\gamma A \rightarrow \rho A}^{\mathrm{VMD}}=\left(\frac{e}{f_{\rho}}\right)^{2} \int d^{2} b\left|1-e^{-\frac{1}{2} \sigma_{\rho N} T_{A}(b)}\right|^{2}$
 VMD и модели
конституентных кварков
- Модель Глаубера правильно учитывает основной основной вклад в экранировку, подавляющий сечение в ~6 раз.
- Но переоценивает данные РИК и БАК Ha 50\%, Frankfurt, Guzey, Strikman, Zhalov, PLB 752 (2016) 51

Модифицированная модель векторной доминантности (mVMD)

- Эффект ядерной экранировки можно усилить учетом неупругих промежуточных состояний за счет дифракционной диссоциации (ДД) фотона в большие массы.
- ДД удобно обсуждать на языке собственных состояний оператора рассеяния T: при высоких энергиях фотон = когерентная суперпозиция долгоживущих ($\mathrm{I}_{\mathrm{c}} \sim \mathrm{E}_{\gamma}$) флуктуаций $\mid \Psi_{\mathrm{k}}>$ с сечением $\sigma_{\mathrm{k}}=\mathrm{t}_{\mathrm{k}}$, Good, Walker, Phys. Rev. 120 (1960) 1857

$$
|\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle \quad \begin{array}{ll}
\operatorname{Im} T\left|\Psi_{k}\right\rangle=t_{k}\left|\Psi_{k}\right\rangle \\
\sum_{k}\left|c_{k}\right|^{2}=1
\end{array}
$$

- Дифракционное рассеяние = начальное состояние | $\Psi>$ переходит в любое | $\Psi_{\mathrm{k}}>$

$$
\left.\left(\frac{d \sigma}{d t}\right)_{t=0}^{\text {diff }}=\frac{1}{16 \pi} \sum_{k}\left|\left\langle\Psi_{k}\right| \operatorname{ImT}\right| \Psi\right\rangle\left.\right|^{2}=\frac{1}{16 \pi} \sum_{k}\left|c_{k}\right|^{2} t_{k}^{2} \equiv \frac{1}{16 \pi}\left\langle\sigma^{2}\right\rangle
$$

- ДД = полная дифракция минус упругое сечение
$\left.\left(\frac{d \sigma}{d t}\right)_{t=0}^{\mathrm{el}}=\frac{1}{16 \pi}|\langle\Psi| \operatorname{Im} T| \Psi\right\rangle\left.\right|^{2}=\frac{1}{16 \pi}\left(\sum_{k}\left|c_{k}\right|^{2} t_{k}\right)^{2} \equiv \frac{1}{16 \pi}\langle\sigma\rangle^{2} \square\left(\frac{d \sigma}{d t}\right)_{t=0}^{\mathrm{inel}}=\left(\frac{d \sigma}{d t}\right)_{t=0}^{\mathrm{diff}}-\left(\frac{d \sigma}{d t}\right)_{t=0}^{\mathrm{el}}=\frac{1}{16 \pi}\left(\left\langle\sigma^{2}\right\rangle-\langle\sigma\rangle^{2}\right)$

Модифицированная модель векторной доминантности (mVMD) (2)

- В вычислениях удобно использовать непрерывную форму этого формализма и ввести распределение $\mathrm{P}(\sigma)$ по адронным флуктуациям в данной налетающей частице (p, π, γ), Blaettel et al, Phys. Rev. D 47 (1993) 2761
- Форма $\mathrm{P}(\sigma)$ как в пионе + усиление вклада малых σ как того требуют данные и точечно-подобное взаимодействие фотонов с кварками

$$
P_{\rho}(\sigma)=N \frac{1}{\left(\sigma / \sigma_{0}\right)^{2}+1} e^{-\left(\sigma-\sigma_{0}\right)^{2} /\left(\Omega \sigma_{0}\right)^{2}}
$$

- Правила сумм для $P(\sigma):$

$$
\begin{aligned}
& \int d \sigma P(\sigma)=1, \\
& \int d \sigma P(\sigma) \sigma=\langle\sigma\rangle, \quad \rightarrow \text { из данных по } \\
& \int d \sigma(\gamma p \rightarrow \rho p) / d t
\end{aligned} \quad \begin{aligned}
& \int d \sigma P(\sigma) \sigma^{2}=\langle\sigma\rangle^{2}\left(1+\omega_{\sigma}\right) \\
& \rightarrow \text { из данных по ДД } \gamma \text { в } \\
& \text { большие массы, Chapin } 1985
\end{aligned}
$$

Модифицированная модель векторной доминантности (mVMD) (3)

- $\mathrm{P}(\sigma)$ для ρ мезонов, Frankfurt, Guzey, Strikman, Zhalov, PLB 752 (2016) 51

$$
P_{\rho}(\sigma)=N \frac{1}{\left(\sigma / \sigma_{0}\right)^{2}+1} e^{-\left(\sigma-\sigma_{0}\right)^{2} /\left(\Omega \sigma_{0}\right)^{2}}
$$

Упругие и неупругие экранировки в фоторождении ρ

- С учетом флуктуаций:

$$
\sigma_{\gamma A \rightarrow \rho A}^{\mathrm{mVMD-GGM}}=\left(\frac{e}{f_{\rho}}\right)^{2} \int d^{2} \vec{b}\left|\int d \sigma P(\sigma)\left(1-e^{-\frac{\sigma}{2} T_{A}(b)}\right)\right|^{2}
$$

- Зарабатываем 2 дополнительных эффекта по сравнению со стандартными методами: уточняем описание сечения $\gamma \mathrm{p} \rightarrow \rho p$ и учитываем неупругие Грибовские экранировки в σ_{γ} А \rightarrow рА
- \rightarrow хорошее описание нормировки и зависимости от энергии $\sigma_{\gamma A \rightarrow \rho A}$

> Frankfurt, Guzey, Strikman, Zhalov, PLB 752 (2016) 51

- Сравнение с данными РИК (STAR) Adler, et al, Phys. Rev. Lett. 89 (2002) 272302; Abelev et al., Phys. Rev. C 77 (2008) 034910; Agakishiev, et al., Phys. Rev. С 85 (2012) 014910 и БАК (ALICE), Adam et al (ALICE), JHEP 1509 (2015) 095; Acharya et al, JHEP 06 (2020) 035.

Фоторождение р в Pb-Pb УПС на БАК

- Хороше описание $\sigma_{\gamma A \rightarrow \rho A}$ означает хорошее описание данных РИК и БАК (Run 1 and 2) по когерентному фоторождению ρ, dб(AA $\rightarrow \rho A A) / d y$ at $y=0$.
- Левый рис.: Зависимость от быстроты в рамках подходов Глаубера (GM) и Грибова-Глаубера Glauber (GGM(.
- Правый рис.: Зависимость от энергии $W_{N N}=V_{S_{N N}}$, сравнение co STARlight

Frankfurt, Guzey, Strikman, Zhalov, PLB 752 (2016) 51

Guzey, Kryshen, Zhalov, PRC 102 (2020) 1, 015208

Фоторождение р в Pb-Pb УПС на БАК (2)

- Представление наших результатов в статьях ALICE, сравнение с другими подходами.

Acharya et al [ALICE\}, JHEP 06 (2020) 035

GKZ = Guzey, Kryshen, Zhalov
y
CCKT = dipole model with hot spots, Glauber model
GMMNS = dipole model with saturation
STARlight = standard MC for UPCs, Glauber model

Фоторождение р в Хе-Хе УПС на БАК

- Тоже самое для УПС ядер ксенона, Acharya et al [ALICE], arxiv:2101.02581 [hep-ex]

GKZ = Guzey, Kryshen, Zhalov
CCKT = dipole model with hot spots, Glauber model
GMMNS = dipole model with saturation
STARlight = standard MC for UPCs, Glauber model

Nuclear parton distributions at small x

- Nuclear parton distributions (nPDFs) = densities/distributions of quarks and gluons in nuclei as function of momentum fraction x at resolution scale μ.
- Defined as matrix elements of quark and gluon fields between nuclear states in the framework of QCD collinear factorization.
- Universal quantities, can be accessed in different processes.

Inclusive DIS
-nPDFs are determined from global QCD fits to data on fixed-target DIS, hard processes in dA (RHIC) and pA $($ LHC $) \rightarrow f_{A}\left(x, \mu^{2}\right)$ with significant uncertainties

$$
R_{g}\left(x, Q^{2}\right)=\frac{g_{A}\left(x, Q^{2}\right)}{A g_{p}\left(x, Q^{2}\right)}
$$

Drell-Yan process

Nuclear shadowing and nPDFs at small x (2)

- One of the goals of the LHC heavy ion program is to better constrain nPDFs: while Run 1 pA@LHC data does not really help, EPPS16, Eskola, et al., EPJ C77 (2017) 163, Run 2 data on dijets and HF production may/should give additional constraints on nPDFs
- The impact of these new data, which are not included in the fit, is usually assessed using Bayesian re-weighting:

Run 2 CMS jets, Eskola, Paakkinen, Paukkunen, EPJC 79 (2019) 6, 511

Run 2 LHCb D0,
Eskola, Helenius,
Paakkinen, Paukkunen, JHEP 05 (2020) 037

Runs 1 \& $2 \mathrm{~J} / \psi$, Kusina, Lansberg, Schienbein, Shao, arXiv:2012.11462 [hep-ph]

- It is also important to use the potential of heavy-ion UPCs to better cônstrain nuclear PDFs at small x .

Model of leading-twist nuclear shadowing: heavy nuclei

- Alternative to extrapolation of nPDFs into $x<0.05$ region : model of leading twist nuclear shadowing, Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255
- Combination of Gribov-Glauber shadowing model with QCD factorization theorems for inclusive and diffractive DIS, Frankfurt, Strikman, EPJ A5 (1999) 293

diffractive
exchange

$$
x f_{j / A}\left(x, Q_{0}^{2}\right)=A x f_{j / N}\left(x, Q_{0}^{2}\right)-8 \pi A(A-1) \Re e \frac{(1-i \eta)^{2}}{1+\eta^{2}} B_{\text {diff }} \int_{x}^{0.1} d x_{\mathbb{P}} \beta f_{j}^{D(3)}\left(\beta, Q_{0}^{2}, x_{\mathbb{P}}\right)
$$

$$
\times \underbrace{\int d^{2} b \int_{-\infty}^{\infty} d z_{1} \int_{z_{1}}^{\infty} d z_{2} \rho_{A}\left(\vec{b}, z_{1}\right) \rho_{A}\left(\vec{b}, z_{2}\right) e^{i\left(z_{1}-z_{2}\right) \times \mathbb{P} m_{N}} e^{-\frac{A}{2}(1-i \eta) \sigma_{\text {soft }}^{j}\left(x, Q_{0}^{2}\right) \int_{z_{1}}^{z_{2}} d z^{\prime} \rho_{A}\left(\vec{b}, z^{\prime}\right)}}_{\begin{array}{c}
\text { proton diffractive PDFs } \\
\text { from HERA }
\end{array}} \text { effective cross section }
$$

Model of leading-twist nuclear shadowing (2)

- Predicts nuclear PDFs at $\mu^{2}=3-4 \mathrm{GeV}^{2} \rightarrow$ input for DGLAP evolution.
- Magnitude of shadowing is determined by proton diffractive PDFs, ZEUS, H1 $2006 \rightarrow$ naturally predicts large shadowing for $g_{A}\left(x, \mu^{2}\right)$.
- One free parameter: $\quad \sigma_{\text {soft }}(x)=\frac{\int d \sigma P_{\gamma}(\sigma) \sigma^{3}}{\int d \sigma P_{\gamma}(\sigma) \sigma^{2}}$
- Estimated using two models of the photon hadronic fluctuations using the GoodWalker approach to diffractive dissociation, Good, Walker, PR 120 (1960) 1857
- $\mathrm{P}(\sigma)$ like in the pion, Blattel et al, 1993
- $\mathrm{P}(\sigma)$ using the dipole model, McDermott, Frankfurt,

Guzey, Strikman, 2000

- The model also predicts impact-parameter-dependent nuclear PDFs $\mathrm{g}_{\mathrm{A}}\left(\mathrm{x}, \mathrm{b}, \mathrm{Q}^{2}\right)$
- shift of t -dependence of $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section in UPCs
- oscillations of beam-spin nuclear DVCS asymmetry at EIC.

Predictions of leading twist model for heavy nuclei

Leading twist (LTA) vs. EPPS16

Results of DGLAP evolution: from $Q^{2}=4$
GeV^{2} to $\mathrm{Q}^{2}=10$ and $10,000 \mathrm{GeV}^{2}$

EIC is an ideal machine to test predictions of this model and distinguish it from other approaches due to:

- wide $x-Q^{2}$ coverage
- measurements of the longitudinal structure function $\mathrm{FL}^{\mathrm{A}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ - measurements of diffraction in eA DIS

Impact parameter dependence of nPDFs

- The model of leading twist nuclear shadowing allows one to predict the dependence of nPDFs on the impact parameter b:

$$
\begin{aligned}
x f_{j / A}\left(x, Q_{0}^{2}, b\right)= & A T_{A}(b) x f_{j / N}\left(x, Q_{0}^{2}\right)-8 \pi A(A-1) B_{\text {diff }} \Re e \frac{(1-i \eta)^{2}}{1+\eta^{2}} \int_{x}^{0.1} d x_{\mathbb{P}} \beta f_{j}^{D(3)}\left(\beta, Q_{0}^{2}, x_{\mathbb{P}}\right) \\
& \times \int_{-\infty}^{\infty} d z_{1} \int_{z_{1}}^{\infty} d z_{2} \rho_{A}\left(\vec{b}, z_{1}\right) \rho_{A}\left(\vec{b}, z_{2}\right) e^{i\left(z_{1}-z_{2}\right) x \mathbb{P} m_{N}} e^{-\frac{A}{2}(1-i \eta) \sigma_{\text {soft }}^{j}\left(x, Q_{0}^{2}\right) \int_{z_{1}}^{z_{2}} d z^{\prime} \rho_{A}\left(\vec{b}, z^{\prime}\right)}
\end{aligned}
$$

$\cdot \rightarrow$ correlations between b and x, in particular, shadowing is stronger in nucleus center \rightarrow shift of t -dependence of $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section \rightarrow confirmed by LHC data on coherent J / ψ photoproduction in $\mathrm{Pb}-\mathrm{Pb}$ UPCs.

- It is a challenge for global fits to extract the b-dependence of nPDFs, EPSo9s, Helenius, Honkanen, Salgado, JHEP 1207 (2012) 073.

Exclusive J/ ψ photoproduction in UPCs

- Ultraperipheral collisions (UPCs) of ions at large impact parameters $\rightarrow \gamma \mathrm{A}$ scattering at high energies, Baltz et al., Phys. Rept. 480 (2008) 1.

$$
\frac{d \sigma_{A A \rightarrow A A J / \psi}(y)}{d y}=N_{\gamma / A}(y) \sigma_{\gamma A \rightarrow A J / \psi}(y)+N_{\gamma / A}(-y) \sigma_{\gamma A \rightarrow A J / \psi}(-y)
$$

Photon flux from QED:

- high intensity $\sim Z^{2}$
- high photon energy $\sim \gamma$

$$
\begin{aligned}
y & =\ln \left[W^{2} /\left(2 \gamma_{L} m_{N} M_{V}\right)\right] \\
& =\mathrm{J} / \psi \text { rapidity }
\end{aligned}
$$

- In leading logarithmic approximation (LLA) of pQCD and non-relativistic approximation for charmonium wave function (J/ $\psi, \psi(2 \mathrm{~S})$), Ryskin, z. Phys. C 57 (1993) 89

$$
\begin{aligned}
& \frac{d \sigma_{\gamma T \rightarrow J / \psi T}(W, t=0)}{d t}=C\left(\mu^{2}\right)\left[x G_{T}\left(x, \mu^{2}\right)\right]^{2} \\
& x=\frac{M_{J / \psi}^{2}}{W^{2}}, \quad \mu^{2}=M_{J / \psi}^{2} / 4=2.4 \mathrm{GeV}^{2} \quad C\left(\mu^{2}\right)=M_{J / \psi}^{3} \Gamma_{e e} \pi^{3} \alpha_{s}\left(\mu^{2}\right) /\left(48 \alpha_{e m} \mu^{8}\right)
\end{aligned}
$$

Coherent J / ψ photoproduction on nuclei

- Application to nuclear targets:

$$
\sigma_{\gamma A \rightarrow J / \psi A}\left(W_{\gamma p}\right)=\kappa_{A / N}^{2} \frac{d \sigma_{\gamma p \rightarrow J / \psi p}\left(W_{\gamma p}, t=0\right)}{d t}\left[\frac{G_{A}\left(x, \mu^{2}\right)}{A G_{N}\left(x, \mu^{2}\right)}\right]^{2} \Phi_{A}\left(t_{\min }\right)
$$

Small correction $\mathrm{k}_{\mathrm{A} N} \approx 0.90-95$ due to different skewnesses of nuclear and nucleon GPDs

- Well-defined impulse approximation (IA):

$$
\sigma_{\gamma A \rightarrow J / \psi A}^{\mathrm{IA}}\left(W_{\gamma p}\right)=\frac{d \sigma_{\gamma p \rightarrow J / \psi p}\left(W_{\gamma p}, t=0\right)}{d t} \Phi_{A}\left(t_{\min }\right)
$$

- Nuclear suppression factor S (like $R_{p A}$ or $\left.R_{A A}\right) \rightarrow$ direct access to R_{g}

$$
S\left(W_{\gamma p}\right)=\left[\frac{\sigma_{\gamma P b \rightarrow J / \psi P b}}{\sigma_{\gamma P b \rightarrow J / \psi P b}^{\mathrm{IA}}}\right]^{1 / 2}=\kappa_{A / N} \frac{G_{A}\left(x, \mu^{2}\right)}{A G_{N}\left(x, \mu^{2}\right)}=\kappa_{A / N} R_{g}
$$

Model-independently from data on UPC@LHC (ALICE, CMS) and HERA, LHCb Abelev et al. [ALICE], PLB718 (2013) 1273; Abbas et al. [ALICE], EPJ C 73 (2013) 2617; [CMS] PLB 772 (2017) 489

From global QCD fits of nPDFs or leading twist nuclear shadowing model
Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290,
Guzey, Zhalov, JHEP 1310 (2013) 207

Spb from ALICE and CMS UPC data vs. theory

- J $/ \psi$ photoproduction in Pb-Pb UPCs at LHC, Abelev et al. [ALICE], PLB718 (2013) 1273;

Abbas et al. [ALICE], EPJ C 73 (2013) 2617; CMS Collab., PLB 772 (2017) $489 \rightarrow$ suppression factor SPb

LTA: Guzey, Zhalov JHEP 1310 (2013) 207 EPS09: Eskola, Paukkunen, Salgado, JHEP 0904 (2009) 065
HKN07: Hirai, Kumano, Nagai, PRC 76 (2007) 065207
nDS: de Florian, Sassot, PRD 69 (2004) 074028

- Good agreement with ALICE data on coherent J / ψ photoproduction in $\mathrm{Pb}-\mathrm{Pb}$ UPCs@2.76 TeV \rightarrow direct evidence of large gluon NS, $\mathrm{R}_{\mathrm{g}}\left(\mathrm{x}=6 \times 10^{-4}-0.001\right) \approx 0.6$.
- Also good description using central value of EPS09, EPPS16, large uncertainty.
- Color dipole models generally underestimate the suppression, Goncalves, Machado (2011); Lappi, Mäntysaari, 2013, but proton shape fluctuations help, Mätysaari, Schenke, PLB 772 (2017) 681

Run 2 ALICE and LHCb results on exclusive J / ψ photoproduction in Pb-Pb UPCs

Acharya et al. [ALICE] arXiv:2101.04577 [nucl-ex]

Burshe at al. [LHCb], NPA 982 (2019) 247

- Comparison to Impulse approximation and STARlight \rightarrow indication of "moderate" nuclear gluon shadowing:
- Model of leading-twist shadowing and EPS09 are in good agreement for $\mathrm{y} \approx 0$ - "...none of the models is able to fully describe the rapidity dependence"

Imaging of nuclear gluons at small x

- In case of non-negligible nuclear shadowing, $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section should be modified:

$$
\begin{aligned}
& \frac{d \sigma_{\gamma A \rightarrow J / \psi A}}{d t}=\frac{d \sigma_{\gamma p \rightarrow J / \psi p}(t=0)}{d t}\left(\frac{R_{g, A}}{R_{g, p}}\right)^{2}\left(\frac{g_{A}\left(x, \mu^{2}\right)}{A g_{p}\left(x, \mu^{2}\right)}\right)^{2} F_{A}^{2}(t) \\
& \frac{d \sigma_{\gamma A \rightarrow J / \psi A}}{d t}=\frac{d \sigma_{\gamma p \rightarrow J / \psi p}(t=0)}{d t}\left(\frac{R_{g, A}}{R_{g, p}}\right)^{2}\left(\frac{g_{A}\left(x, t, \mu^{2}\right)}{A g_{p}\left(x, \mu^{2}\right)}\right)^{2}
\end{aligned}
$$

- Answer in terms of nuclear GPD in the $x_{1}=x_{2}$ limit, i.e. in terms of impact-parameter-dependent nPDF $\mathrm{f}_{\mathrm{j}} \mathrm{A}\left(\mathrm{x}, \mathrm{Qo}^{2}, \mathrm{~b}\right)$, Guzey, Strikman, Zhalov, PRC 95 (2017) 025204
- Correlations between b and $\mathrm{x} \rightarrow$ shift of t -dependence of $\gamma \mathrm{A} \rightarrow \mathrm{J} / \psi \mathrm{A}$ cross section:

t-dependence of coherent J/ ψ photonuclear cross section

Acharya et al. [ALICE] arXiv:2101.04623 [nucl-ex]
Guzey, Strikman, Zhalov, PRC 95 (2017) 025204

- Resulting shift $=5-11 \%$ broadening in impact parameter space of gluon nPDF
- Similar effect is predicted to be caused by saturation, Cisek, Schafer, Szczurek, PRC86 (2012) 014905; Lappi, Mäntysaari, PRC 87 (2013) 032201; Toll, Ullrich, PRC87 (2013) 024913; Goncalves, Navarra, Spiering, arXiv:1701.04340

Новые ограничения на ядерную глюонную плотность из фоторождения J / ψ

- Строго говоря, анализ данных по когерентному фоторождению J / ψ в $\mathrm{Pb}-$ Pb УПС требует учета многих эффектов (связь обобщенных и обычных партонных плотностей, радиационные и релятивистские поправки).
- Вместо полноценного совместного анализа всех данных, можно оценить влияние фактора ядерного подавления, который мы извлекли из данных, на текущие неопределенности глюонной плотности, используя метод статистического взвешивания, Guzey, Kryshen, Strikman, Zhalov, PLB 816 (2021) 136202

$$
S_{P b}(x)=\sqrt{\frac{\sigma_{\gamma A \rightarrow J / \psi A}\left(W_{\gamma p}\right)}{\sigma_{\gamma A \rightarrow J / \psi A}^{\mathrm{IA}}\left(W_{\gamma p}\right)}}
$$

$$
S_{P b}(x=0.00112)=0.62 \pm 0.057
$$

$$
S_{P b}\left(x=6.17 \times 10^{-4}\right)=0.63 \pm 0.025
$$

$$
S_{P b}(x)= \begin{cases}a+b_{1} \ln \left(x_{1} / x_{0}\right)+b_{2} \ln \left(x / x_{1}\right), & \text { for } x \geq x_{1} \\ a+b_{1} \ln \left(x / x_{0}\right), & \text { for } x_{1}>x>x_{0} \\ a+c \ln \left(x / x_{0}\right), & \text { for } x \leq x_{0}\end{cases}
$$

Новые ограничения на ядерную глюонную плотность из фоторождения $\mathrm{J} / \psi(2)$

- Используя данный набор ЯПР (центральное значение + ошибки), создаем много клонов

$$
g_{A}^{k}\left(x, \mu^{2}\right)=g_{A}^{0}\left(x, \mu^{2}\right)+\frac{1}{2} \sum_{i=1}^{N}\left(g_{A}^{i+}\left(x, \mu^{2}\right)-g_{A}^{i-}\left(x, \mu^{2}\right)\right) R_{k i}
$$

- Для каждого клона считаем, как хорошо он описывает данные по факторам ядерного подавления $\operatorname{Spb}(x)$, и находи стат. вес w_{k}

$$
\chi_{k}^{2}=\sum_{j=1}^{N_{\text {data }}} \frac{\left(\sqrt{(d \sigma / d y) /\left(d \sigma^{I \mathrm{~A}} / d y\right)^{(j)}}-R_{P b, k}^{(j)}\right)^{2}}{\left(\delta \sqrt{(d \sigma / d y) /\left(d \sigma^{\mathrm{IA}} / d y\right)^{(j)}}\right)^{2}}
$$

- Новое центральное значение глюонной плотности и ее ошибки:
$\left\langle g_{A}\left(x, \mu^{2}\right)\right\rangle=\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {sep }}} w_{k} g_{A}^{k}\left(x, \mu^{2}\right)$,
$\delta\left\langle g_{A}\left(x, \mu^{2}\right)\right\rangle=\left[\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {sep }}} w_{k}\left(g_{A}^{k}\left(x, \mu^{2}\right)-\left\langle g_{A}\left(x, \mu^{2}\right)\right\rangle\right)^{2}\right]^{1 / 2}$

Заключение

- УПС ионов являются важным компонентом физической программы БАК и позволяют изучать открытые вопросы структуры протонов и ядер в КХД.
- Изучение УПС приобретает все большую важность и рассматривается как прототип измерений на планируемых ускорителях (EIC, LHeC/FCC).
- Когерентное фоторождение ρ мезонов в $\mathrm{Pb}-\mathrm{Pb}$ УПС позволяет уточнить модели адронной структуры фотона и механизма ядерной экранировки и указывает на важность неупругой (Грибовской) экранировки.
- Когерентное фоторождение J / ψ в $\mathrm{Pb}-\mathrm{Pb}$ УПС указывает на большие ядерные экранировки ядерной глюонной плотности при малых х $\mathrm{Rg}_{\mathrm{g}}\left(\mathrm{x}=6 \times 10^{-4}-10^{-3}, \mu^{2} \approx 3 \mathrm{GeV}^{2}\right) \approx 0.6$, дает новые ограничения на эту фундаментальную величину и позволяет получить $3 x$ мерную картину глюонной плотности в ядрах.

