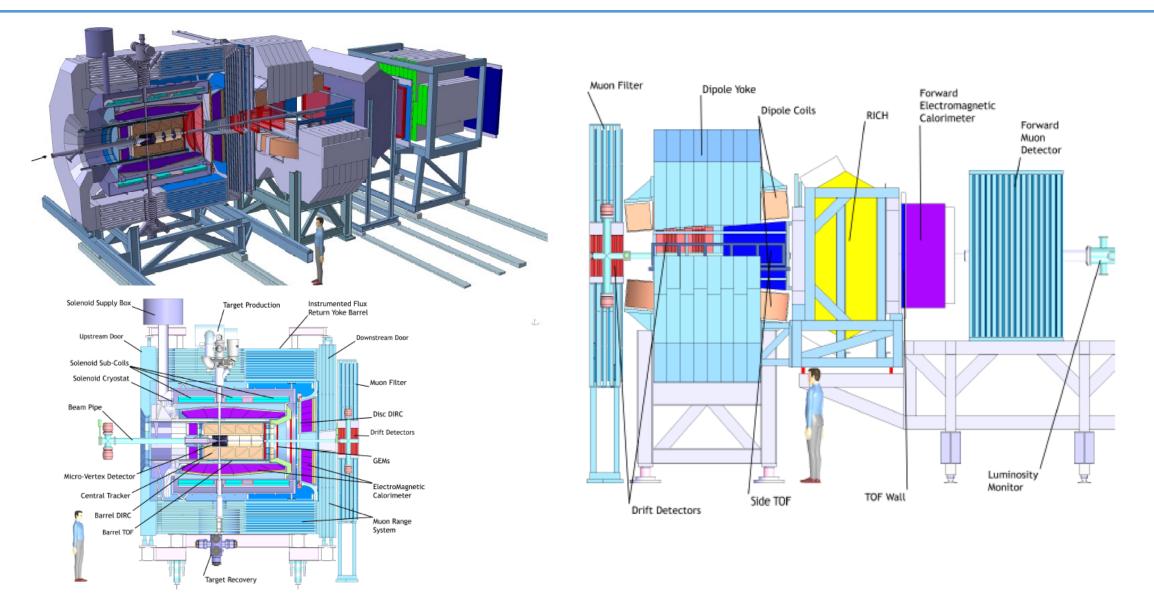
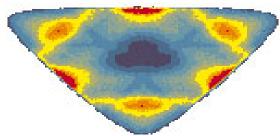
Current Status of the PANDA FTOF Wall Detector

Gleb Fedotov

PNPI HEPD Seminar February 2021


Project Participants

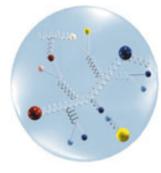
G. Fedotov A.Izotov S. Manaenkov O. Miklukho D. Veretennikov S. Volkov A. Zhdanov



The PANDA Detector



PANDA Physics


Hadron Spectroscopy

Search for exotic particles and measurement of hadron properties

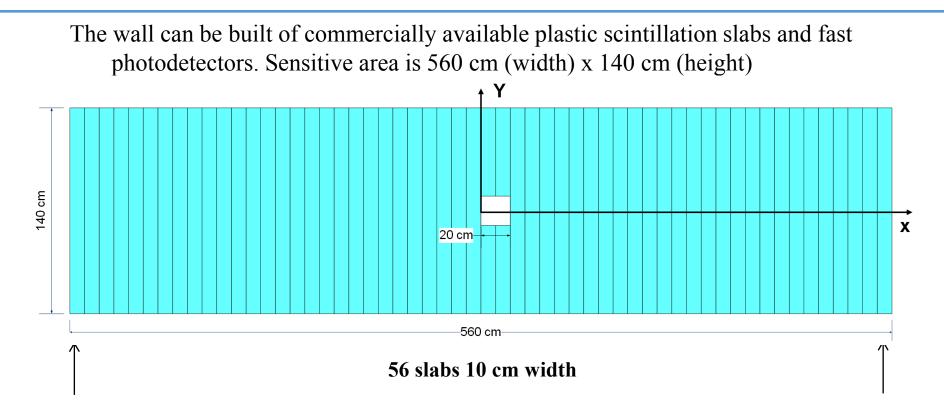
Hadrons in Matter

Study in-medium effects of hadronic particles

Nucleon Structure

Generalized parton distribution, Drell-Yan processes and time-like form factor of the proton

Hypernuclei


Measurement of nuclear properties with an additional strangeness degree of freedom

FTOF Wall Design

<u>Comment</u>. The beam pipe diameter at this z-location is 180 mm. i.e. 2 slabs to be cut.

FTOF Wall Functions

PID of forward emitted particles using time-of-flight information for low momentum hadrons

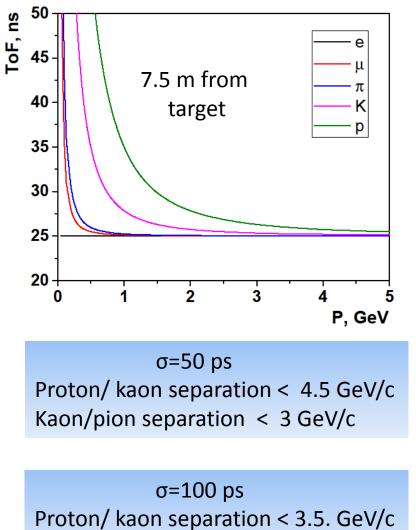
protons < 4.GeV/c, kaons < 3. GeV/c, pions < 2.5 GeV/c *close to or below forward RICH threshold* <u>provided</u> time resolution is about 50-100 ps FS momentum resolution must be no worse 0.01, FT reconstruction $\delta L_{track} \sim$ few mm

➢ Event start stamp reference time T₀

provided a particle independently identified e.g. with FRICH or EMC(FSC) or Forward muon system

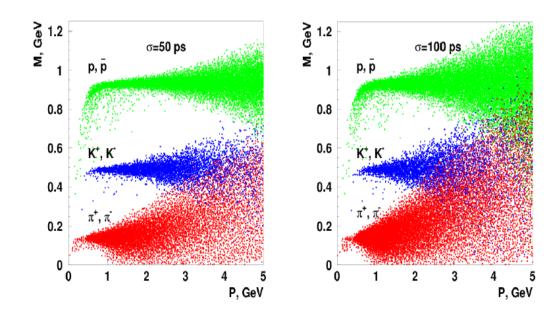
Energy deposition information

expected energy deposition range from 5 to 50 MeV


> Track position

expected precision few centimeters vertically and 10 centimeters horizontally

FTOF Wall Hadron Id



Kaon/pion separation < 2.5 GeV/c

$$m = p \sqrt{\frac{t^2}{t_c^2} - 1} \cdot \frac{\delta m}{m} = \sqrt{\left(\frac{\delta p}{p}\right)^2 + \gamma^4 \left(\frac{\sigma_{TOF}}{t}\right)^2}$$
$$t_c = L_{track} / c$$

At FS momentum resolution $\Delta p/p=0.01$

TOF resolution $\sigma_{TOF} = 50 \text{ or } 100 \text{ ps}$

HEPD Seminar February 2021

7

TDR Status

Technical Design Report for:

 PANDA


 Forward Time of Flight detector (FToF wall)

 (AntiProton Annihilations at Darmstadt)

Strong Interaction Studies with Antiprotons

PANDA Collaboration

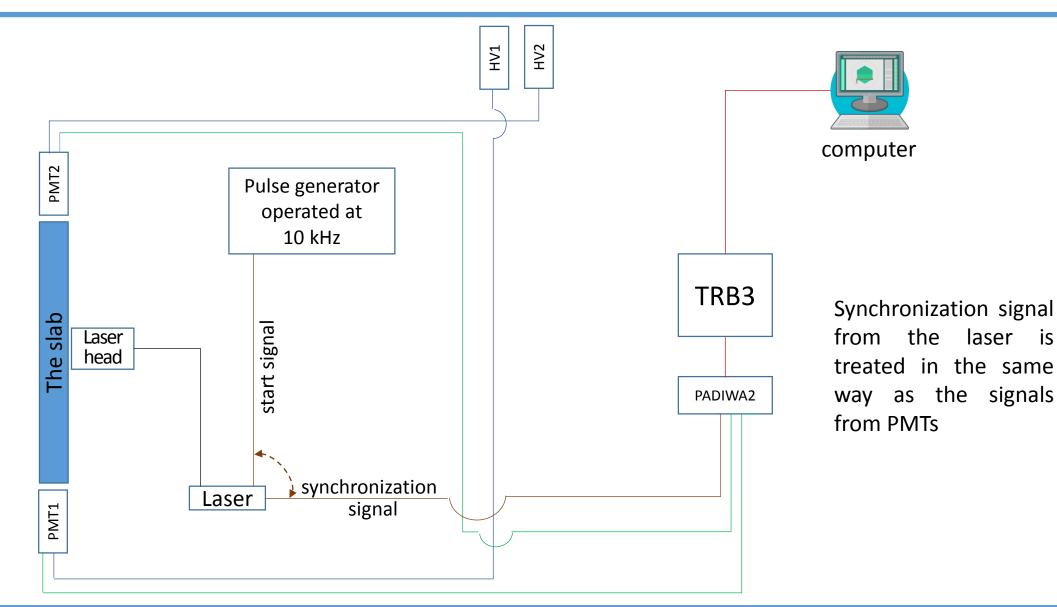
January 19, 2018

The FtoF wall TDR approved by the FAIR ECE.

Editors Stanislav Belostotski Oleg Miklukho Yuri Naryshkin Denis Veretennikov Andrei Zhdanov Anton Izotov

Technical Coordinator Lars Schmitt Deputy of TC

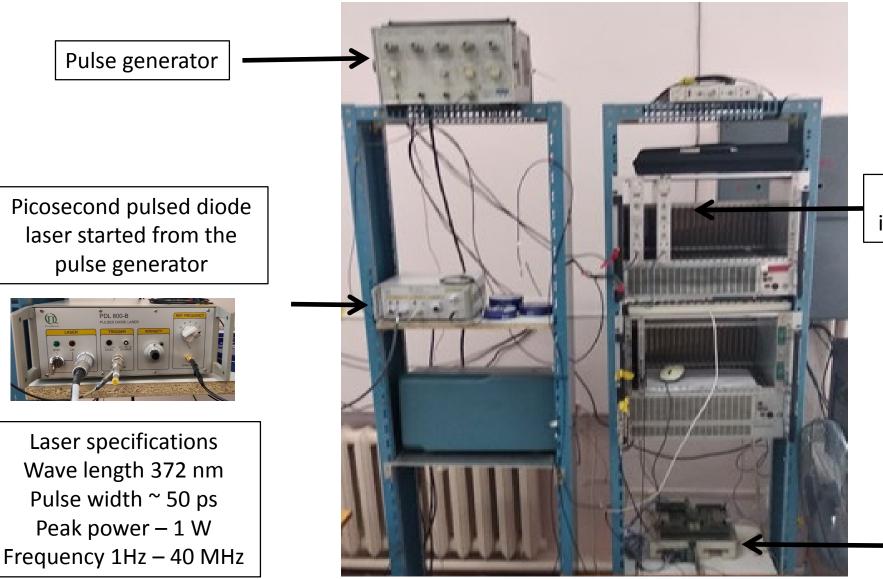
Anastasious Belias


Spokesperson

Klaus Peters
Deputy of SP
Tord Johansson

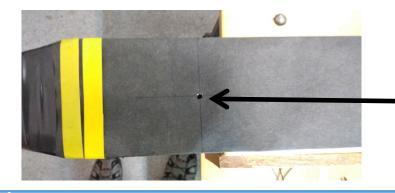
Flowchart of The Experiment

Test Lab Overview



The Testing Electronics

Two HV modules inserted in the crate



TRB3

The Investigated Slab

140x10x2.5 cm EJ-200 slab with lightguides and PMTs attached from both sides.

Three 5mm diameter holes in the wrapping materials were made along the slab. One in the center and one at a distance of 10 cm from each side.

Additional Procurements

- In order to test the exact same prototype that we are going to use in actual development one EJ-200 slab and two Hamamatsu R13435 PMTs were ordered. *This additional procurement was made PNPI HEPD financial support.*
- HV dividers for the new PMTs were developed by our electronics department.

Comparison of R13435 and R2083 PMTs

R13435

OLI (LKAL						
Parameter			Description / Value	Unit		
Spectral Response			300 to 650	nm		
Wavelength of Cathode Radiant Sensitivity			420	nm		
Window Material			Borosilicate glass	-		
		R13435	Bialkali	-		
Photocathode	Material	R13435-100	Super Bialkali	-		
	Minimum Effe	ctive Area	ф46	mm		
Dynode Structure / Number of Stages		Linear Focused / 10	-			
Base		JEDEC No. B20-102	-			
Operating Ambient Temperature Tube Assembly Type		-30 to +50	°C			
		Assembly Type	embly Type 0 to +50			
Storage Temperature		Tube	-80 to +50			
		Assembly Type	0 to +50	°C		
Suitable Socket		E678-20B (supplied)	-			
Recommended Supply Voltage Between Anode and Cathode		1750	V			

Parameter		Description/Value	Unit	
Spectral Response		300 to 650	nm	
Wavelength of Maxim	num Response	420	nm	
Photocathode	Material	Bialkali		
Photocathode	Minimum Useful Diameter	46	mm dia.	
Window Material		Borosilicate glass		
Dynada	Structure	Linear focused		
Dynode	Number of Stages	8	_	
Base		19-pin glass base with SMA output connector	_	
Socket		E678-19C	_	

R2083

	N /		
	Parameter	Value	Unit
Supply Voltage	Between Anode and Cathode	3500	Vdc
Supply voltage	Between Anode and Last Dynode	1000	Vdc
Average Anode Current		0.2	mA
Ambient Temperature		-30 to +50	°C

CHARACTERISTICS (at 25 °C)

GENERAL

Parameter		Min.	Тур.	Max.	Unit	
Cathode Sensitivity	Luminous (2856 K)	R13435	-	95	-	µA/lm
Callode Selisitivity		R13435-100	-	130	-	µA/lm
Cathode Blue Sensitiv	vity Index	R13435	9	10	-	-
(Cs 5-58)		R13435-100	12.5	13.5	-	-
Anna da Canaitiatita	Luminous (2856 K)	R13435	80	400	-	A/lm
Anode Sensitivity		R13435-100	80	550	-	A/lm
Gain			-	4.2x10 ⁶	-	-
Anode Dark Current (After 30 min storage in darkness)			-	30	200	nA
Anode Pulse Rise Time			-	2.0	-	ns
Electron Transit Time			-	23 (24)	-	ns
Transit Time Spread (FWHM)			-	230 (280)	-	ps
Pulse Linearity (+/-2 % deviation)			-	30 (100)	-	mA

CHARACTERISTICS (at 25°C)

	Parameter	Min.	Тур.	Max.	Unit
Anode Sensitivity	Luminous (2856K)	50	200	_	A/Im
	Luminous (2856K)	60	80		μA/Im
Cathode Sensitivity	Radiant at 420nm	_	80		mA/W
	Blue (CS 5-58 filter)		10.0		μA/Im-b
Gain		_	2.5×10^{6}		
Anode Dark Current (aft	er 30 min. storage in darkness)		100	800	nA
Time Response	Anode Pulse Rise Time	_	0.7		ns
	Electron Transit Time		16	_	ns
	Transmit Time Spread		0.37		ns
Pulse Linearity at 2% Deviation		_	100		mA

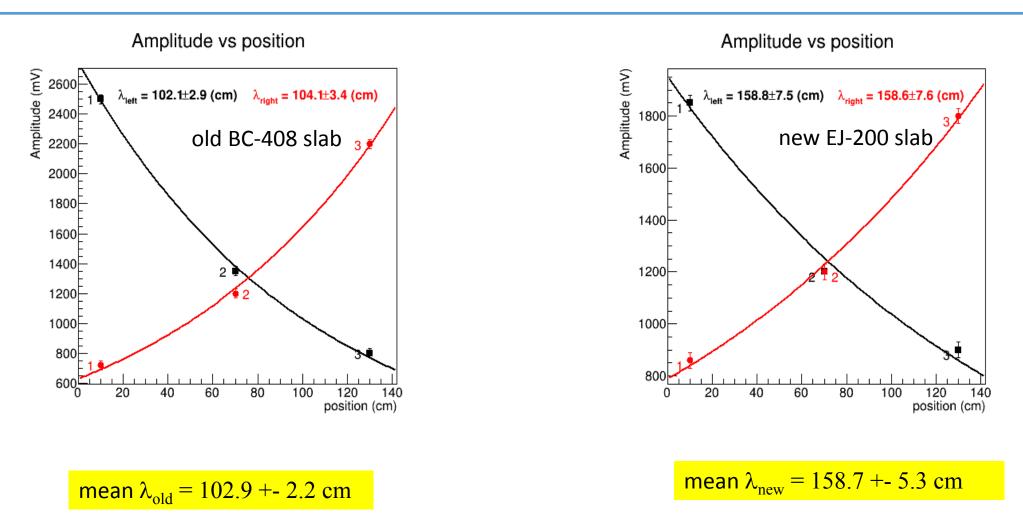
Comparison of EJ-200 and BC-408 scintillators

EJ-200 PLASTIC SCINTILLATOR

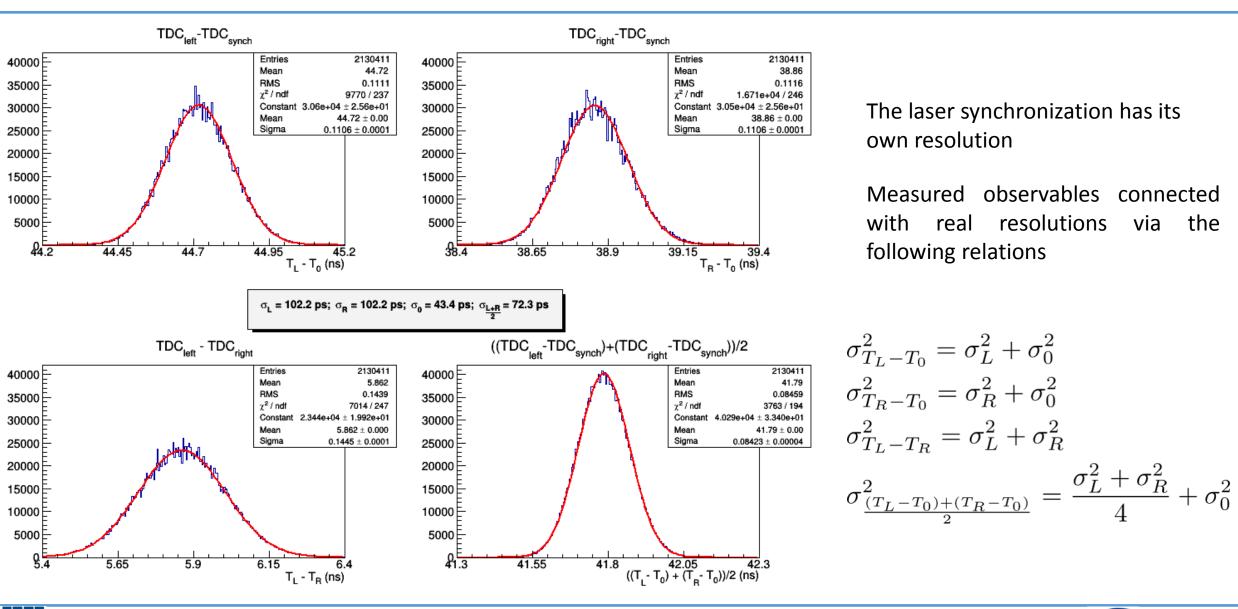
This plastic scintillator combines the two important properties of long optical attenuation length and fast timing and is therefore particularly useful for time-of-flight systems using scintillators greater than one meter long. Typical measurements of 4 meter optical attenuation length are achieved in strips of cast sheet in which a representative size is $2 \text{ cm} \times 20 \text{ cm} \times 300 \text{ cm}$.

Physical and Scintillation Constants:

Light Output, % Anthracene 64	
Scintillation Efficiency, photons/1 MeV e ⁻ 10,	000
Wavelength of Max. Emission, nm	j –
Rise Time, ns 0.9	
Decay Time, ns	
Pulse Width, FWHM, ns~2.	5
No. of H Atoms per cm ³ , x 10 ²² 5.1	7
No. of C Atoms per cm ³ , x 10 ²² 4.69	9
No. of Electrons per cm ³ , x 10 ²³ 3.33	3
Density, g/cc:	

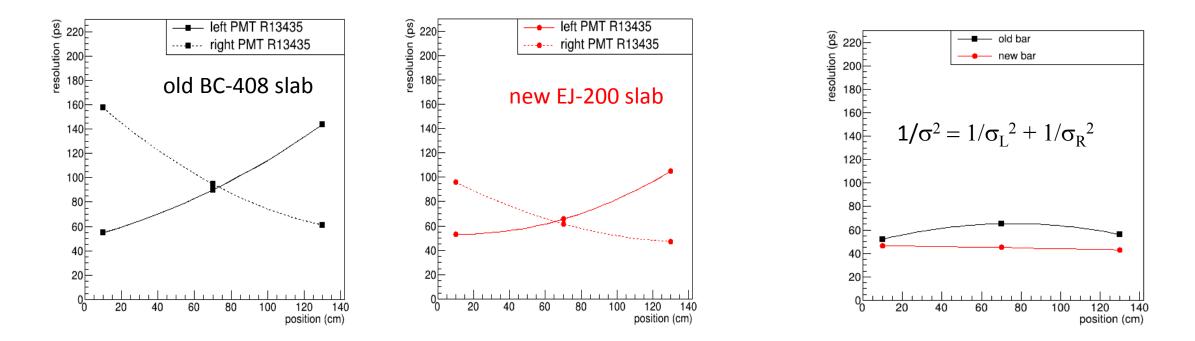

	BC-400	BC-404	BC-408	BC-412	BC-416
Radiation Detected					
<100keV X-rays			Х		
100keV to 5MeV gamma rays				Х	
>5MeV gamma rays	Х				
Fast neutrons				х	Х
Alphas, betas	Х	Х	Х		
Charged particles, cosmic rays, muons, protons, etc.			Х	Х	х
Principal Uses/Applications	general purpose	fast counting	TOF large area	large area	large area economy
Scintiliation Properties					
Light Output, %Anthracene	65	68	64	60	38
Rise Time, ns	0.9	0.7	0.9	1.0	-
Decay Time (ns)	2.4	1.8	2.1	3.3	4.0
Pulse Width, FWHM, ns	2.7	2.2	~2.5	4.2	5.3
Wavelength of Max. Emission, nm	423	408	425	434	434
Light Attenuation Length, cm*	160	140	210	210	210
Bulk Light Attenuation Length, cm	250	160	380	400	400
Atomic Composition					
No. H Atoms per cc (x10 ²²)	5.23	5.21	5.23	5.23	5.25
No. C Atoms per cc (x10 ²²)	4.74	4.74	4.74	4.74	4.73
Ratio H:C Atoms	1.103	1.100	1.104	1.104	1.110
No. of Electrons per cc (x10 ²³)	3.37	3.37	3.37	3.37	3.37
*The typical 1/e attenuation length of a 1x20x200cm photomultiplier tube coupled to one end.	cast sheet w	ith edges poli	shed as meas	ured with a bi	alkali

Attenuation Length Measurement



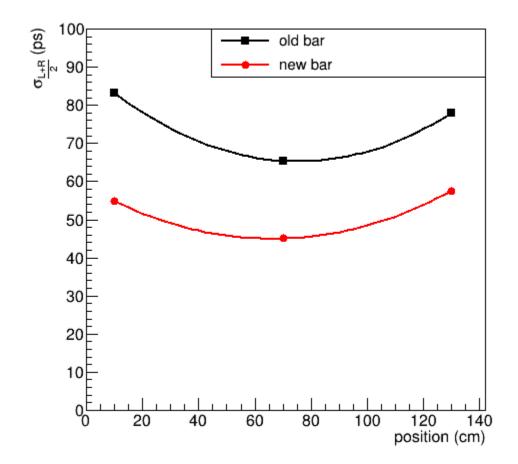
The measured attenuation length for new slab is about 1.5 times longer. That is in coincidence with scintillator material datasheets.

The Measurement method



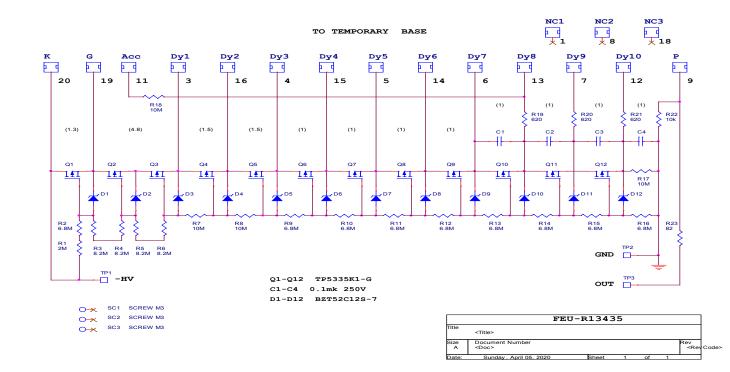
Weighted Mean Method

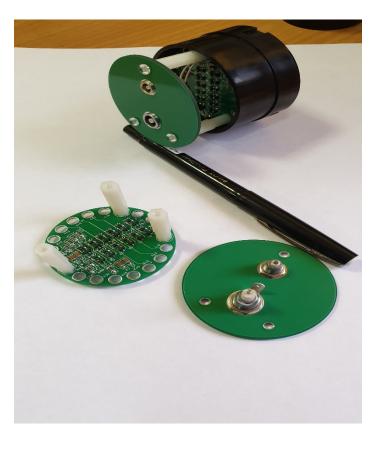
Can be used if the hit position is measured with the precision about 2mm


Timing resolution for various scintillation counter prototypes vs position along the slab.

The corresponding weighted mean vs position along the slab

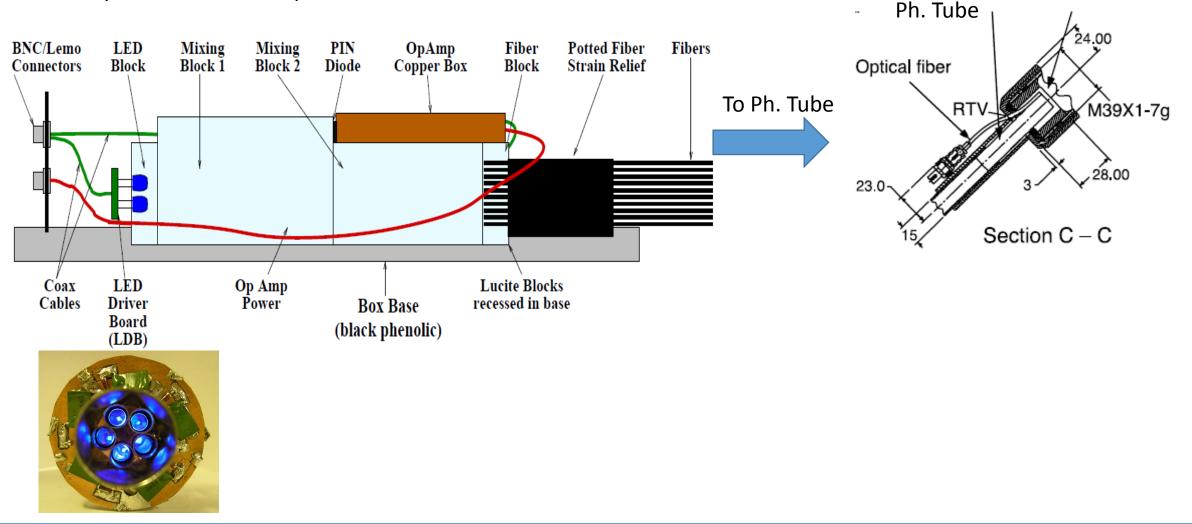
Not sensitive to the hit position method





Active Dividers

New Active Divider prototype for Hamamatsu R13435 Is developed by the PNPI Electronics department



LED Based Calibration System

LEDIS (Led Imitator of scintillation) system that will be used for the time calibration is currently under development by our Electronics department

Conclusions and Outlooks

- As it is expected, the measured attenuation length for the new scintillation slab turned out to be significantly longer than that for old one.
- > The new slab has significantly (more than 1.4 times !!!) better resolution, than old one.
- > The resolution better than 50 ps can be achieved even without well knowledge about hit position.
- > The laser measurements will be compared with ones at PNPI proton beam.
- The development of the calibration system based on the ultra-bright blue LEDs is underway with the help of the PNPI Electronics Department.
- > Our Electronics department will also provide us with HV system.
- > Continue work on modeling the registration of θ^+ production in PANDA.
- > The signing of MoU between FAIR and PNPI.

