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Motivations and Disclaimers:

e How does the pure state with S = 0 in the r.f. evolves to the set of
‘quasi free’ partons in the IMF with S #£ 07

e What is the rigorous definition of ‘quasi free’ parton distribution?

e Why do partons have kind of Bolzman distribution while the number
of collisions turns out to be small?

e How does parton distribution relate to parton density functions?

e What do we need to use instead of patrons deep in the saturation
region?

Our answers lie in the entanglement of quantum states
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Do not expect:
e A thorough knowledge of EE

- C. Holzhey, F. Larsen and F. Wilczek, “Geometric and Renormalized Entropy in Conformal Field
7, Theory Nucl. Phys. B 424 (1994) 443, [hep-th/9403108];

- P. Calabrese and J. L. Cardy, “Entanglement Entropy and Quantum Field Theory: A Non-Technical
Introduction”, Int. J. Quant. Inf. 4 (2006) 429, [quant-ph/0505193];

— M.Martinelli, “Photons, Bits and Entropy: From Planck to Shannon at the Roots of the Information
Age”, Entropy,19, 347 (2017);

e A rigorous answer to every questions.

e A list of prediction for DIS deep in the saturation region.

This talk is an attempt to give the answers
to all above questions, based on simple
calculations and the observed similarities
between CFT and the parton cascade if we
discuss it in terms of entropy.
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Ideas and results (1) :

e In toy (141) dimensional model as well as in there full QCD cascade
we computed von Neumann entropy S(x);

e We found that S(z) = In (CBG (CB, Q2) )

where =G (x, Q?) is the multiplicity of partons(gluons);

e This equation implies that all microstates of the system are equally
probable and S is maximal;

e This equipartitioning of microscopic states that maximizes the von
Neumann entropy corresponds to the parton saturation;
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e S diverges logarithmically at  — 0; S(z) = Aln (%) = Aln (%)

with L = 1/(mzx) and € = 1/m < proton’s Compton wave length,
A is the BFKL intercept A = 2.8ag;

Le
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Ideas and results (2) :

e Reminds the expression for EE in (14+1) CFT: S(x) = gln%

e We argue that this agreement is not coincidental, and propose that
the parton distributions, and the entropy associated with them, arise
from the entanglement between the spatial domain probed by DIS and
the rest of the target;

e The maximal value of the entanglement entropy attained at small x
implies that the corresponding partonic state is maximally entangled,

e Unlike the parton distribution, the EE is an appropriate observable
even at strong coupling when the description in terms of quasi-free
partons fails.
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QM of parton entanglement, as | understood it

A is the region that we measure in DIS, The physical sates are in
HA(’I’LA).

B is a complementary region, unobserved state € Hg(npg)

the entire space: ANB. the composite system in HyXHp

1 Wap) = Zcij|¢f)®|¢f); matrix C' has n 4 X np dimension
]

If y€ A and z € B the density matrix:

p(y,z,y,2") =¥ap (y,z) ¥ 5 (y,2’) < pure state with S=0.

pa(y,y) = /dz p(y,z,Y,2) = trepas
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Schmidt decomposition theorem ( Schmidt (1907)):

(Wap)=)  an|PH)|T7)

where a,,=Vv CC'.

e o o pyp=|Vap)(VapB| :terAB:Zozfl |\Ifﬁ‘)(\llﬁ| o o o

where a? = p,<— the probability of a state with n partons.

e o o Svon Neumann — - Z DPn In Dn — SE e o o
n
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1 + 1 toy model of non-linear QCD evolution:

BFKL Pomeron:

do (Y) _
o = Ao (Y) where A =28asgs
dY
dB,(Y)/dY = -A
dP,, (Y
° dl(/ ) = —AnP, (Yl + gn — 1) AP, 4 (Yz

depletion of the probability growth due to splitting

Generating function:

Z(Y,u) = > P,(Y)u", with Z(Y =0,u) = u; Z(Y,u=1) =1
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Equation:

8Z(Y,u) __ 8Z(Yu) “Z@lY)) gz 2
o 220w _ _Aq(1— u)2ZY y 22 = _A(Z — 2%

For scattering amplitude
N(Y;v)=1—Z(Y,1—~v) — dN(Y)/dY = A (N — N?)

Solution:

ue AY —AY oo n —_AY\M
® Z(Y,u) = T+u(e—AY 1) = ue Do uT (1 — e )

° Pn(Y) — e—AY(l _ e—AY)’n—l

Gluon sructure function:

G (x) = (n)

dZ (Y, u) Ay (1)A
- @€ p
du

ZnPn (Y) = u
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Entropy: Svon Neumann = —)_,, PnIn(pn) = — > P, (Y)In(P, (Y))

S= -3, k(1 =-F"(-mWN-D+nmn(1-4%))

— In(N —1) + Nln( L ) 225 InN = Aln (1)
Y NFT

[ In (zG(x)) if AY >1
SV.N. — 4
xG(x) —xG(z=x)) xG(x) —xG(zx=x0) .
L —In [ G (x=x) : } [ G (x=xq) . } if AY<<1

al 1\ /1
Svon Neumann — — ann ln(pn) - — Z In N N = InN

7

Vv
maximal entanglement

N = zG(x, Qz)
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Multiplicity distributions: (N = 7 — 1)

Pu(Y) = e=8¥(1— e80T o pamytt o ()"

Negative binomial distribution:

on _ pPNBD _ _ r \ Tnt+r) [ (n) \"
o P (’T’, n, n) _ (’r—l—(n)) n!T'(r) (r+(n))

m

Oin
with r = 1(number of failures) and p = N/ (N 4+ 1) = 1 — 1/7n(probability of success)

_|_
Cumulants: Cq = <n?1> /< n>7 = (u%)qz (Y, u)

6(n — 1)7 + 1 u=1
C = 2—-1/n; C3 = i _2)n+ ;
n
(12Aa(A — 1) + 1)(2R — 1) C (A — 1)(120R%(2 — 1) + 307) + 1
; 5 =

n3 n4

Cy =

Predictions: Cy ~ 1.83, C53 ~ 5.0, C,; ~ 18.2 and C5 ~ 83.

Experiment: CJ™ = 2.040.05, CJ™® = 5.940.6, CS = 2142, and CS = 90+19
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QCD cascades:

d Pn (Y,{7,b;} R ) 1 (74 )2 -
(BY ) = — Z?:l wa(r;) Pn (Y, {7;, bz}) + &g Z?zl ﬁ P, 4 (Ya {73, bz})
i
2 7 2
_ = d
wag(r) = an 27rr 2 (7::— )2

Kharzeev &E.L(2017), Gotsman &E.L(2020):

1 1| ALICE |nl< 1
.
e For DIS N = X ..(z, Q?); - 107
ZJsea(wa Q2) De- 10-3
= 2z (a(z,Q%) + d(=, Q%) + 5(=, Q%)) ALICE 7 Tev
1074} B

e For pp -scattering N = Q3(s);
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Dedicated experiment : H1(2020)

“Measurement of charged particle multiplicity distributions in DIS at HERA and its implication to
entanglement entropy of partons 7, DESY 20-176 arXiv:2011.01812 [hep-exp]: S # In (ZBG(CL‘, Q2))
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Esea(wa Qz) = 2z (’&(m, Qz) + J(:B, Qz) + 5(.’13, Qz))

A current fragmentation

< "had ™ %sea

gluon production

nhad~ x G

e o o SE — Sparton — Shadrons e o o

Dokshitzer,Khoze, Troian & Mueller (1988))
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Beyond of perturbative QCD:

1+1 CFT c. Holzhey, F. Larsen and F. Wilczek(1994), P. Calabrese and J. L. Cardy (2006) :

Sy = 21 (L)
E_SIl €

where

O L is the length of the probed region;

o € is the regularization scale ( the resolution of the measurement );
o c is the central charge of CFT that counts the number of d.o.f ;

InDIS: L=——ande=21 S = A In(Y)
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Our conjecture:

At small x the field theory describing

parton evolution approaches a fixed point

corresponding to a CFT with the central charge
c = 3A

e c increases with evolution and hence A < % (zamolodchikov (1986))

e In pQCD and in high energy phenomenology A = 0.25;

- (w,Q2> - Const

= ,1/3

DIS as a probe of entanglement E. Levin 18



Back to results

o Identifying the entropy of partonic system as the entanglement
entropy explains the apparent loss of quantum coherence in the parton
model;

o Parton distributions have a well-defined meaning only for weakly
coupled partons at large momentum transfer Q? — but the entanglement
entropy is a universal concept that applies to states at any value of the
coupling constant;

o Unlike the parton distributions, the entanglement entropy is subject
to strict bounds — for example, if the small = regime is described by
a CFT, the growth of parton distributions should be bounded by
G (x, Q%) <Const x~1/3 ;

® Shadrons = Spartons <— the Il law of thermodynamics.

Shadrons = Spartons <— local hadron parton duality;
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