

Studies of Ξ_c baryons at LHCb ICPPA-2020, Moscow Seminar HEPD PNPI, Gatchina

Aleksei Chubykin ¹ on behalf of the LHCb Collaboration

¹Petersburg Nuclear Physics Institute, NRC KI

January 26, 2021

The LHCb detector

Observation of $\Xi_c^+ \to p\phi$

Diagram.
Spectra and fit.
Efficiencies calibration a

New exited Ξ_a^0

New exited baryons

General

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$

Intro
Fits
Uncertainties and result

Search for CPV $\Xi_c^+ \to pK^-\pi^+$

Conclusions

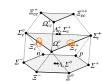
Outline

- 1 The LHCb detector
- 2 Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \to p\phi$

JHEP 04 (2019) 084

Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$

Phys. Rev. Lett. 124 (2020) 222001


4 First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$

Phys. Rev. D102 (2020) 071101(R)

5 Search for CP violation in $\Xi_c^+ \to pK^-\pi^+$ using model-independent techniques

Eur. Phys. J. C80 (2020) 986

6 Conclusions

Multiplets of charmed baryons with highlights of baryons contained both c ans s quarks.[1]

Charmed baryons overview

The LHCb detector

Observation of

 $\Xi_c^+ \to p\phi$

Diagram. Spectra and fit.

Efficiencies calibration an systematics

New exited Ξ_c^0 baryons

General

Result

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$

Intro
Fits
Uncertainties and result

Search for CPV $\Xi_c^+ \to p K^- \pi^+$

Conclusions

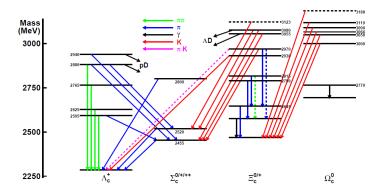


Figure 1.1: Charmed baryon spectrum as in Ref. [2] (provided by Heavy Flavor Averaging Group).

The LHCb detector

Observation of $\Xi_c^+ \to p\phi$

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$

Fits
Uncertainties and result

Search for CPV $\Xi_c^+ \to p K^- \pi^+$

Conclusions

The LHCb detector

The LHCb [3] detector is located at LHC in CERN

- a single-arm forward spectrometer
- the design is targeted to physics of b and c quarks
 - high precision vertex detector
- unique ability of particle identification
- RUN I (2011-2012) RUN II (2015-2018)
- \blacksquare The integral luminosity corresponds to: 9.1 fb $^{-1}$

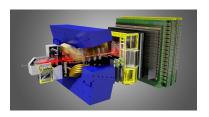


Figure 2.1: The LHCb detector

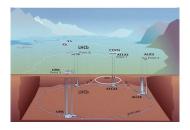


Figure 2.2: Overall view of the LHC experiments

 $\begin{array}{lll} \mbox{pseudorapidity:} & 2 < \eta < 5 \\ \mbox{polar angle:} & 10 < \theta < 250 \mbox{ mrad} \\ \mbox{resolution:} & \Delta p/p = 0.5\% \mbox{ (low p)} \\ & \Delta p/p = 1.0\% \mbox{ (200 GeV/c)} \\ \mbox{ECAL resolution:} & 1\% + 10\% \mbox{ } \sqrt{E} \mbox{ [GeV]} \\ \end{array}$

trigger efficiency:
90 % for dimuon decays
30 % for multi-body hadronic

 $\begin{array}{ll} \text{tracking efficiency:} & 96\% \text{ for long tracks} \\ \text{Kaon ID:} & 95\% \text{ for } 5~\% ~\pi \rightarrow K \text{ mis-id} \\ \text{Muon ID:} & 97\% \text{ for } 1\text{-}3~\% ~\pi \rightarrow \mu \text{ mis-id} \\ \end{array}$

Table 1: Detector performance

The LHCb detector

Observation of $\Xi_c^+ \to p \phi$ Diagram.

Spectra and fit.

Efficiencies calibration are systematics

New exited Ξ_c^0 baryons

Result

Measurement for

 $\Xi_c^0 \to \Lambda_c^+ \pi^-$ Intro
Fits
Uncertainties and result

Search for CPV $\Xi_c^+ \to p K^- \pi^+$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \to p\phi$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ o p\phi$, JHEP 04 (2019) 084

- The LHCb is perfect tool for investigation of rare and suppressed decays.
- The research uses the pp collision data, integrated luminosity of 2 fb $^{-1}$, $\sqrt{s}=8$ TeV
 - Tree-level decays with both $u \rightarrow s$ and $c \rightarrow d$ transitions are known as doubly Cabibbo-suppressed (DCS)
- The CKM matrix elements $|V_{us}| \approx |V_{cd}| \ll |V_{ud}| \approx |V_{cs}|$
- The DCS decay branching fractions are smaller with respect to Cabibbo-favoured (CF) and singly Cabibbo-suppressed (SCS).

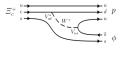


Figure 3.1: $\Xi_c^+ \to p \phi$ diagram

The DCS decays can keep important information:

- The role of a non-spectator guark, and in particular Pauli interference
- The lifetime hierarchy of charm baryons. Recent measurement of the Λ_c^+ , Ξ_c^+ and Ξ_c^0 charm baryons lifetimes at LHCb [4]

The SCS $\Xi_c^+ \to pK^-\pi^+$ is used as a normalization decay channel:

$$R_{p\phi} = \frac{\mathcal{B}(\Xi_c^+ \to p\phi)}{\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)}$$

The LHCb detector

Observation of $\Xi_c^+ \to p \phi$

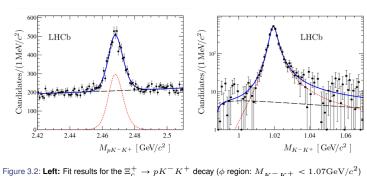
Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General Result

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$


Uncertainties and result Search for CPV $\Xi_c^+ \to pK^-\pi^+$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \to p\phi$

LHCP

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ o p\phi$, JHEP 04 (2019) 084

Right: Background subtracted K^-K^+ mass distribution for the $\Xi_c^+ \to pK^-K^+$ decay

Extraction of K^-K^+ component from $M(pK^-K^+)$ mass-spectrum is done using unfolding sPlot-technique [5]

The LHCb detector

Observation of $\Xi_c^+ \to p \phi$ $_{\rm Diagram.}$

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Result

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$ Intro

Search for CPV $\Xi_c^+ \to p K^- \pi^+$

Observation of the doubly Cabibbo-suppressed decay $\Xi_a^+ \to p\phi$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ o p\phi$, JHEP 04 (2019) 084

Uncertainty studies include following steps:

 \blacksquare Evaluation of the trigger-related uncertainties with the Λ_c^+ samples and MC studies

 Using the alternative calibration sample for PID-correction procedure

Variation of signal and background models

lacksquare Variation of (p_t,y) -binning scheme

 Variation of the interpolation procedure for efficiency maps

Pseudo-experiments for sPlot technique validation

Source	Uncertainty (%)
Signal fit model	0.5
Background fit model	0.5
sPlot-related uncertainty	1.0
Trigger efficiency	3.0
PID efficiency	2.2
Tracking	1.0
(p_{T}, y) binning	1.3
Size of simulation sample	0.7
Selection requirements	0.8
Total	4.4

Table 2: Systematic uncertainties relative to the central value of the ratio $R_{p\phi}$

■ The ratio of the branching fractions with respect to the $\Xi_c \to pK^-\pi^+$ decay is measured to be

$$R_{\rho\phi} = (19.8 \pm 0.7 \pm 0.9 \pm 0.2) \times 10^{-3}$$

■ The third uncertainty here is the knowledge of the $\phi \to K^+K^-$ branching fraction.

The LHCb detector

Observation of $\Xi_c^+ \to p\phi$

Spectra and fit.

systematics

New exited Ξ_c^0 baryons

General Result

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$ Intro

Search for CPV $\Xi_c^+ \to pK^-\pi^+$

Conclusions

Observation of new exited Ξ_c^0 baryons

Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+K^-$, Phys. Rev. Lett. 124 222001

■ With new data collected in RUN II the LHCb is perfect tool for baryon spectroscopy

The Particle Data Group provides information about two excited states of Ξ_c^0 baryon in range of interest:

- The $\Xi_c(2930)^0$ baryon was observed in 2018 by Belle in $B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$ decays [6]
- \blacksquare The $\Xi_c(2970)^0$ is well studied in several decay modes [7] [8]

The LHCb observes three narrow structure in this region: $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$

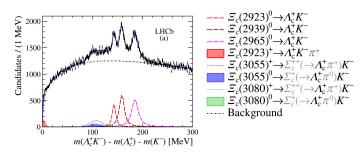


Figure 4.1: Distributions of the invariant-mass difference $\Delta M = m(\Lambda_c^+ K^-) - m(\Lambda_c^+) - m(K^-)$

The LHCb detector

Observation of

 $\Xi_c^+ \to p \phi$ Diagram.
Spectra and fit.

Efficiencies calibration a systematics

New exited Ξ_c^0 baryons

General

Result

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$ Intro

Uncertainties and result Search for CPV $\Xi_c^+ \to pK^-\pi^+$

Conclusions

Observation of new exited Ξ_c^0 baryons

Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+K^-$, Phys. Rev. Lett. 124 222001

- The lineshapes of entire $\Lambda_c^+ K^-$ are S-wave relativistic Breit-Wigner distr. convolved with resolution
- The lineshapes of partially reconstructed decays $\Xi_c(3055)$ and $\Xi_c(3080)$ was determined by MC
- \blacksquare The experimental mass resolution in ΔM internal varies between 1.7 and 2.2 MeV
- \blacksquare This research uses same approach as recent investigation of Ω_c baryon [9]
- The sample is the pp collision data, integrated luminosity of 5.6 fb $^{-1}$, $\sqrt{s}=13$ TeV

Table 0. Commons of the neversators for the studied states

Table 3. Summary of the parameters for the studied states				
Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma \text{ [MeV]}$	
$\Xi_c(2923)^0$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1 \pm 0.8 \pm 1.8$	
$\Xi_c(2939)^0$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2 \pm 0.8 \pm 1.1$	
$\Xi_c(2965)^0$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1 \pm 0.9 \pm 1.3$	

- \blacksquare Third uncertainty denotes the uncertainty on the known Λ_c^+ mass
- The $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$ baryons are observed for the first time.
- The state previously observed by Belle might be an overlap of $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$.
- An investigation of additional final states is required to establish whether the $\Xi_c(2965)^0$ and $\Xi_c(2970)^0$ states are different baryons.

The LHCb detector

Observation of $\Xi_c^+ \to p\phi$

Diagram.

Efficiencies calibration as systematics

New exited Ξ_c^0 baryons

General Result

 $\begin{array}{c} \text{Measurement for} \\ \Xi_c^0 \to \Lambda_c^+ \pi^- \\ \text{Intro} \end{array}$

Search for CPV $\Xi_c^+ \to p K^- \pi^+$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$, Phys. Rev. D102 071101(R)

■ A signal interpreted as a $\Xi_c^0 \to \Lambda_c^+ \pi^-$ decay was observed for the first time by Belle in 2014 [10]

Two possible processes:

- Transition $s \to u$ with $W^- \to \bar{u}d$ (SUUD).
- \blacksquare Decay via $cs \rightarrow dc$ weak scattering (WS)

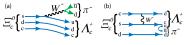


Figure 5.1: Decay diagrams for $\Xi_c^0 \to \pi^- \Lambda_c^+$ (a) The SUUD amplitude, and (b) the WS amplitude

- There is no suitable branching fractions for normalization in the direct measurement approach
- It is possible to determine $\mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+)$ by following ratios and two external values:

$$\mathcal{R}_1 = \frac{N(\Xi_c^0)}{N(\Lambda_c^+)} = \frac{f_{\Xi_c^0}}{f_{\Lambda^+}} \cdot \mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+)$$

$$\mathcal{R}_2 = \frac{N(\Xi_c^0)}{N(\Xi_c^+)} = \frac{f_{\Xi_c^0}}{f_{\Xi_c^+}} \cdot \frac{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)}{\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)} \cdot \mathcal{B}(\Xi_c^0 \to \pi^-\Lambda_c^+)$$

- The $f_{\Xi_c^0}/f_{\Lambda_c^+}$ can be estimated from recent LHCb measurements [11] for production fractions of beauty baryons with help of heavy-quark symmetry(HQS)
- $\begin{tabular}{ll} & \textbf{Using HQS} \ f_{\Xi_c^0}/f_{\Lambda_c^+} = C f_{\Xi_b^-}/f_{\Lambda_b^0}, \mbox{where} \ C \ \mbox{is a correction for feed-downs of excited} \ \Xi_b \ \mbox{baryons} \mbox{baryons} \ \mbox{baryons} \$
- The $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$ is taken from recent Belle measurement [12]

The LHCb detector

Observation of $\Xi_c^+ \to p\phi$

Diagram.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$

Uncertainties and result

Search for CPV

 $\Xi_c^+ \to pK^-\pi^+$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$, Phys. Rev. D102 071101(R)

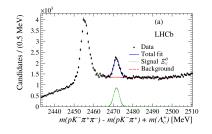


Figure 5.2: Reconstructed invariant-mass distribution and signal fit of $M(pK^-\pi^+\pi^-)$

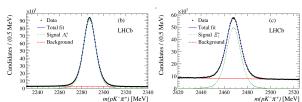


Figure 5.3: Distributions of the mass spectrum $M(pK^-\pi^+)$ Left: Λ_c^+ region, Right: Ξ_c^+ region

The LHCb detector

Observation of

 $\Xi_c^+ \to p\phi$

Diagram. Spectra and fit.

Efficiencies calibration a systematics

New exited Ξ_c^0 baryons

General

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$

 $\Xi_{C}^{\circ} \to \Lambda_{C}^{\circ} \pi$ Intro

Uncertainties and result

Search for CPV $\Xi_c^+ \to pK^-\pi^+$

Conclusions

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$, Phys. Rev. D102 071101(R)

 $\qquad \qquad f_{\Xi_b^-}/f_{\Lambda_b^0} \ \ {\rm from\ LHCb\ measurement\ [11]}$

Ghost tracks refer to uncertainties from

- $\blacksquare \ \mathcal{B}(\Xi_c^+ \to pK^-\pi^+) \text{ from Belle [12]}$
- falsely reconstructed tracks
- PID refers to particle identification efficiencies
- The intermediate decays are uncertainties of the inexact modeling of the resonant structures for the charmed baryons decays.
- The b-decay sources refer to charmed baryons originating from b-baryon decays

Table 4: Systematic uncertainties in the branching fraction measurements.

Source		Estimate (%)		
	$\mathcal{B}(\Xi_c^0)$	$\rightarrow \pi^- \Lambda_c^+$)	$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$	
	\mathcal{B}_1	B_2	B_3	
$f_{=b}^-/f_{\Lambda b}^0$	32	-	32	
$f_{\Xi c}^{\overline{0}}/f_{\Lambda c}^{+} = C \cdot f_{\Xi b}^{-}/f_{\Lambda b}^{0}$	6	-	6	
$f_{\Xi c}^{0}/f_{\Xi c}^{+}=1$	-	1	1	
$\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$	-	49	-	
$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$	-	5	5	
Simulation statistics	4	3	2	
Trigger efficiency	7	8	2	
Ghost tracks	2	2	0	
PID	1	1	1	
Tracking efficiencies	2	2	0	
Fit yields	6	6	3	
Intermediate decays	2	2	2	
b-decay sources	2	0	2	
Lifetimes	3	3	2	
Relative $\int \mathcal{L}$	-	1	1	
Sum of external	33	49	33	
Sum of intrinsic	12	13	6	
Sum of all	35	51	34	

■ First measurement for \mathcal{B} $(\Xi_c^0 \to \pi^- \Lambda_c^+)$ to be $(0.55 \pm 0.02 \pm 0.18) \times 10^{-2}$

The LHCb detector

Observation of

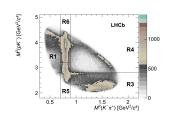
 $\Xi_c^+ \rightarrow p\phi$

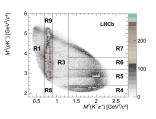
New exited Ξ_a^0 baryons

General

Measurement for $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$

Search for CPV


 $\Xi_c^+ \to pK^-\pi^+$



Search for CP violation in $\Xi_c^+ \to pK^-\pi^+$ using model-independent techniques

Search for CP violation in $\Xi_c^+ \to p K^- \pi^+$ using model-independent techniques, Eur. Phys. J. C80 986

- Observation of CP violation in charm meson \mathbb{D}^0 decays was done by LHCb in 2019 [13]
- The research uses the pp collision data, integrated luminosity of 3.0 fb $^{-1}$, with $\sqrt{s} = 7$ and 8 TeV
- Analysis was done by both binned and unbinned methods in the Dalitz plot

- (a) Dalitz plot for $\Lambda_c^+ \to pK^-\pi^+$ (b) Dalitz plot for $\Xi_c^+ \to pK^-\pi^+$

January 26, 2021

- Binned method is based on comparison between the Dalitz plots using χ^2 test
- Under the hypothesis of CPV, difference between bins should show deviation from normal distribution
- Unbinned method is based on a concept of a k-nearest neighbours
- The obtained results are consistent with the absence of CP violation in $\Xi_c^+ \to p K^- \pi^+$ decays

Conclusions

Charmed baryons overview

The LHCb detector

Observation of

 $\Xi_c^+ \to p\phi$

Spectra and fit.

systematics

New exited Ξ_c^0 baryons

General Result

Measurement for $\Xi_c^0 \to \Lambda_c^+ \pi^-$

Intro Fits

The LHCb detector is perfect and stable tool for precise measurements in charm physics sector

■ We expect more interesting results from LHCb soon

Thank You

The LHCb detector

Observation of $\Xi_c^+ \to p\phi$

Spectra and fit.
Efficiencies calibration ar systematics

New exited Ξ_c^0 baryons

 $\begin{array}{c} \text{Measurement for} \\ \Xi_c^0 \to \Lambda_c^+ \pi^- \\ \text{Intro} \\ \text{Fits} \end{array}$

Search for CPV $\Xi_c^+ \to p K^- \pi^+$

Conclusions

References I

- [1] V Crede and W Roberts. Progress towards understanding baryon resonances. *Reports on Progress in Physics*, 76(7):076301, jun 2013.
- [2] Yasmine Sara Amhis et al. Averages of b-hadron, c-hadron, and τ -lepton properties as of 2018. 2019.
- [3] Alves et al. The LHCb Detector at the LHC. JINST, 3(LHCb-DP-2008-001. CERN-LHCb-DP-2008-001):S08005, 2008. Also published by CERN Geneva in 2010.
- [4] Roel Aaij et al. Precision measurement of the Λ_c^+ , Ξ_c^+ and Ξ_c^0 baryon lifetimes. *Phys. Rev.*, D100(3):032001, 2019.
- [5] Muriel Pivk and Francois R Le Diberder. sPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Methods Phys. Res., A, 555(physics/0402083. LAL-2004-07):356–369. 20 p, Feb 2004.
- [6] Y. B. Li, C. P. Shen, I. Adachi, J. K. Ahn, H. Aihara, S. Al Said, D. M. Asner, T. Aushev, R. Ayad, V. Babu, and et al. Observation of $\xi_c(2930)^0$ and updated measurement of $b^- \to k^- \lambda_c^+ \bar{\Lambda}_c^-$ at belle. The European Physical Journal C, 78(3), Mar 2018.
- [7] B. Aubert, M. Bona, D. Boutigny, Y. Karyotakis, J. P. Lees, V. Poireau, X. Prudent, V. Tisserand, A. Zghiche, J. Garra Tico, and et al. Study of excited charm-strange baryons with evidence for new baryons $\xi_c(3055)^+$ and $\xi_c(3123)^+$. *Physical Review D*, 77(1), Jan 2008.
- [8] Belle Collaboration, J. Yelton, et al. Study of excited ξ_c states decaying into ξ_c^0 and ξ_c^+ baryons, 2016.
- [9] Roel Aaij et al. Observation of five new narrow Ω_c^0 states decaying to $\Xi_c^+K^-$. *Phys. Rev. Lett.*, 118(18):182001, 2017.
- [10] S.-H. Lee, B. R. Ko, et al. Measurements of the masses and widths of the $\Sigma_c(2455)^{0/++}$ and $\Sigma_c(2520)^{0/++}$ baryons. *Phys. Rev. D*, 89:091102, May 2014.
- [11] Roel Aaij et al. Measurement of the mass and production rate of Ξ_b^- baryons. *Phys. Rev.*, D99(5):052006, 2019.
- [12] Y. B. Li, C. P. Shen, et al. First measurements of absolute branching fractions of the Ξ_c^+ baryon at belle. *Phys. Rev. D*, 100:031101, Aug 2019.
- [13] R. Aaij, C. Abellán Beteta, et al. Observation of cp violation in charm decays. Phys. Rev. Lett., 122:211803, May 2019.