Сверхтонкая аномалия: статус, проблемы и перспективы

Hyperfine anomaly: status, problems and perspectives

A. Barzakh Petersburg Nuclear Physics Institute, Gatchina, Russia on behalf of Windmill-ISOLTRAP-RILIS collaboration

ISOLDE-RILIS

In-source laser spectroscopy of the neutron-deficient Au isotopes: shape coexistence and shape evolution studies

ISOLDE-RILIS

In-source laser spectroscopy of the neutron-deficient Au isotopes: shape coexistence and shape evolution studies

REMINDER:

$$\frac{a_1 \cdot I_1}{\mu_1} = const \quad \text{for point-like nucleus}$$

Due to the spatial distribution of the magnetic moment and the charge inside a finite-size nucleus this ratio changes from one nucleus to another

$$a = a_{point} (1 + \varepsilon_A) (1 + \delta_A)$$

 ε — BW correction (magnetization distribution); δ — BR correction (charge distribution)

$${}^{A_{1}}\Delta {}^{A_{2}} = \frac{a_{1} \cdot I_{1}}{\mu_{1}} \cdot \frac{\mu_{2}}{a_{2} \cdot I_{2}} - 1 = {}^{A_{0}}\Delta_{BW}^{A_{1}} + {}^{A_{0}}\Delta_{BR}^{A_{1}} \approx (\varepsilon_{0} - \varepsilon_{1}) + (\delta_{0} - \delta_{1})$$

For heavy atoms Δ_{BR} is expected to be negligible compared to Δ_{BW} . ${}^{A_0}\Delta_{BR}^{A_0+2}(Au) \sim 1 \cdot 10^{-4}, \Delta_{BW}(Au) \sim 1 - 10\%$ Accordingly, below we will ignore Δ_{BR} contribution to RHFA for Au.

REMINDER:

$${}^{A_1}\Delta {}^{A_2} = \frac{a_1 \cdot I_1}{\mu_1} \cdot \frac{\mu_2}{a_2 \cdot I_2} - 1 \approx (\varepsilon_{A_1} - \varepsilon_{A_2}) \quad \text{RHFA}$$

To obtain experimental values of RHFA one should measure μ and *a* independently \rightarrow ABMR, NMR-ON etc. methods of the independent μ measurement may be applied only for stable and comparatively long-lived nuclei with high yield due to low efficiency of these techniques.

HFA, THEORY: BOHR & WEISSKOPF

A. Bohr and V. Weisskopf, 1950; A. Bohr, 1951 extreme single-particle model in nuclear sector one-electron approximation in atomic sector

Factorization: ratio of anomalies for the different atomic states is independent from nuclear properties

WHY SHOULD WE STUDY HFA?

1. Accurate magnetic moment values

$$\mu_{A} = \mu_{A_{0}} \cdot \frac{I_{A}}{I_{A_{0}}} \cdot \frac{a_{A}}{a_{A_{0}}} \cdot (1 + {}^{A_{0}} \Delta^{A})$$

 $^{A_1}\Delta$ A_2 is of order of 10⁻² for heavy nuclei; however for Au ~ 10%!

$$b \sim (Z \cdot A^{1/3})^{2(1-\rho)}, \rho = (1-(\alpha Z)^2)^{1/2}$$

This means that for $Z \sim 90$ HFA is larger nearly 2 times than for Z = 79

WHY SHOULD WE STUDY HFA?

1. Accurate magnetic moment values

2. Application to QED test. Benchmark for atomic and molecular calculations in search for parity violation and other effects in atomic/molecular systems

WHY SHOULD WE STUDY HFA?

1. Accurate magnetic moment values

2. Application to QED test. Benchmark for atomic and molecular calculations

3. Information on the magnetization distribution; sensitivity to configurations mixture (other than in μ)

"We should use the HFA data in conjunction with the values of the magnetic moment"

$${}^{A_1}\Delta {}^{A_2} = \frac{a_1 \cdot I_1}{\mu_1} \cdot \frac{\mu_2}{a_2 \cdot I_2} - 1$$

MOSKOWITZ-LOMBARDI RULE

$$\varepsilon = \alpha / \mu$$
 P. A. Mosko
 ${}^{1}\Delta^{2} = \alpha \left(\frac{1}{\mu_{1}} - \frac{1}{\mu_{2}}\right), \quad \alpha = \pm 1.0 \cdot 10^{-2} (\text{Hg}),$
 $i = l \pm 1/2$

P. A. Moskowitz and M. Lombardi, Phys. Lett. 46B (1973) 334

C Ekström et al., Nucl. Phys. A 348, (1980) 25

 $\alpha = \pm 1.2 \cdot 10^{-2}$ (Au),

 $^{191}\Delta^{193}(Ir)_{ML} = 1.13 [1/\mu(191) - 1/\mu(193)] = 0.63\%$ $^{191}\Delta^{193}(Ir)_{exp} = 0.64(7)\%$

S. Büttgenbach et al.,Z. Physik A 286, 333-340 (1978)

MOSKOWITZ-LOMBARDI RULE

T. Fujita, A. Arima, Nucl. Phys. A254, 513 (1975) (theoretical calculations in the framework of the core-polarization model)

$$\mathcal{E} = c_1 + \frac{\alpha}{\mu}$$
 \longrightarrow ML rule. However, α in theory is strongly state dependent and success of ML rule for dozen configurations with the same α remains unexplainable

It was shown recently that this rule is (at least) not universal and does not work for rareearths: J. R. Persson, Hfi 162, 139 (2005).

ML RULE in Cd

N. Frömmgen et al., Eur. Phys. J. D 69, 164 (2015);

"Weak" ML rule (FA rule): linear dependence of $ref \Delta^A$ on $(1/\mu - 1/\mu_{ref})$

However, ML rule (and its modifications) remains the most popular for at least qualitative estimation of HFA

EKSTRÖM PRESCRIPTION for GOLD

Drawbacks of the Ekström prescription:

$$\mathcal{E} = c_1 + \frac{\alpha}{\mu}, c_1 \neq 0!$$

1. c_1 from FA relation is in the region of $-0.02 \div 0.02 \rightarrow$ additional $\sim 3\%$ error 2. unknown ε gives additional $\sim 3\%$ error

DIFFERENTIAL HYPERFINE ANOMALY

$$\rho_{n_1 l_1, n_2 l_2}^{A} = \frac{a_{n_1 l_1}^{A}}{a_{n_2 l_2}^{A}}$$

Ratio $P_{n_l l_1, n_2 l_2}^A$ may have a different value for different isotopes because the atomic states with different *n*, *l* have different sensitivity to the nuclear magnetization distribution.

DHFA \implies **RHFA** \implies μ correction

$$\eta = \frac{A_1 \Delta^{A_2}(n_1 l_1)}{A_1 \Delta^{A_2}(n_2 l_2)} \longrightarrow A_1 \Delta^{A_2}(n_2 l_2) = \frac{A_1 \Delta^{A_2}(n_2 l_2)}{\eta - 1}$$

factorization: $\boldsymbol{\eta}$ is independent of A

determination of RHFA without independent high-accuracy μ -measurements

$$\mu_{A} = \mu_{A_{0}} \cdot \frac{I_{A}}{I_{A_{0}}} \cdot \frac{a_{A}}{a_{A_{0}}} \cdot (1 + {}^{A_{0}} \Delta^{A})$$

This new method of RHFA determination was proposed in: V. J. Ehlers *et al.*, Phys. Rev. 176, 25 (1968). J. R. Persson, Eur. Phys. J. A **2**, 3 (1998)

and applied for far from stability Tl nuclei in: A. E. Barzakh *et al.* Phys. Rev. C **86**, 014311 (2012) and for ²⁰⁸Bi in: S. Schmidt *et al.*, Phys. Lett. B 779 (2018) 324

INDEPENDENCE of the PRINCIPAL QUANTUM NUMBER *n*

A. Pérez Galván et al., Phys. Lett. B 655 (2007) 114

DHFA in GOLD

A. E. Barzakh et al., Phys. Rev. C **101**, 034308 (2020) Yu. A. Demidov et al., Phys. Rev. A **103**, 032624 (2021)

To extract μ properly one needs calculation/measurement of η -factor.

Calculations give: $\eta = 4.03(30)$

 η (Au; 6s, 6p_{1/2}) = 4.03(30)

- 3.19 A. Bohr and V. F. Weisskopf (1950)
- 3.51 J. Eisinger and V. Jaccarino (1958)
- 4.50 H. H. Stroke, R. J. Blin-Stoyle, and V. Jaccarino (1961)
- 3.33 S. Song, G. Wang, A. Ye, and G. Jiang (2007)

RHFA AND CORRECTED μ FOR NEUTRON-DEFICIENT Au ISOTOPES

 η (Au; 6s, 6p_{1/2}) = 4.03(30)

A	Ι	$197\Delta^A$	$\mu(\mu_N)$	A	Ι	$197\Delta^A$	$\mu(\mu_N)$
176m1	2	0.04(18)	-0.767(43)	181	3/2	0.130(45)	1.232(49)
176m2	9	0.053(39)	5.19(20)	182	2	0.174(65)	1.659(93)
177	1/2	0.178(63)	1.257(67)	183	5/2	0.126(23)	2.066(42)
177m	11/2	0.114(14)	6.519(38)	187m	9/2	0.095(16)	3.529(53)
178	3	0.11(8)	-0.962(77)	189m	11/2	0.087(16)	6.365(38)
178m	8	0.106(18)	4.895(82)	191m	11/2	0.117(14)	6.326(37)
179	1/2	0.127(32)	1.050(30)	193m	11/2	0.112(11)	6.320(37)
180	1	0.21(14)	-0.826(94)	195m	11/2	0.112(14)	6.316(37)

RECALCULATION OF THE PREVIOUSLY MEASURED Au MAGNETIC MOMENTS

A	Ι	$\mu_{\rm lit}(\mu_N)$	$^{197}\Delta^{A}(6s)$ (%)	$\mu_{\text{recalc}}(\mu_N)$
194	1	0.0763(13)	1.8(33)	0.0754(25)
193	3/2	0.1396(5)	-0.5(11)	0.1398(15)
191	3/2	0.1369(9)	-1.2(14)	0.1363(19)
189	1/2	0.494(14)	9.4(59)	0.499(27)
189m	11/2	6.186(20)	8.6(16)	6.365(38)
187	1/2	0.535(15)	12.7(84)	0.557(41)
186	3	-1.263(29)	3.1(51)	-1.202(60)
185	5/2	2.170(17)	9.4(30)	2.193(61)

RHFA for 11/2- ISOMERS in GOLD

 $^{197}\Delta^{(I=11/2)}(6s) = 0.113(6)$

failure of the ML rule

MAGNETIC MOMENTS of $I = 11/2^{-}$ Au ISOMERS

NUCLEAR FACTOR

$$\begin{split} \delta &= b_N (R/\lambda)^{\chi}, \, \varepsilon = b_M \, d_{\rm nuc} \, (R/\lambda)^{\chi}, \, \chi = 2\sqrt{1 - (Z\alpha)^2 - 1} \\ a &= a_0 \, (1 - \delta) \, (1 - \varepsilon) \end{split}$$

^{201, 199}Hg II: hfs constants calculated with uncertainties 0.06 and 0.08% and $\varepsilon = 2.0$ and 1.8 (ML)

conservative estimation of a_0 uncertainty ~2.5%

А	Ι	d _{nuc} , expt	d _{nuc} , sp	
199	3/2	3.2(5)	3.7	
197	3/2	5.1(5)	8.0	\rightarrow 7% error in <i>a</i>
l95m	11/2		0.73	

ATOMIC CALCULATIONS of η FACTOR in Ra⁺, HFA and μ EVALUATION

 $\eta (\text{Ra}^+; 7s_{1/2}, 7p_{1/2})_{\text{expt}} = 2.15(80)$

theory:

 $\eta = 2.90$ (Demidov, 2021)

 η = 3.09 (Skripnikov, 2021)

A	$^{213}\Delta^A$ (Ra II) %	$^{213}\Delta^A$ (Ra I) %	$\mu (\mu_N)$
211	-0.96(20)	-0.86(24)	0.8778(31)
213	0.00	0.0000	0.6133(18) ^a
221	0.03(90)	-0.04(109)	-0.1805(17)
223	-1.12(51)	-1.33(59)	0.2702(16)
225	-0.80(27)	-0.66(31)	-0.7338(15)
227	-0.53(40)	-0.75(61)	-0.4043(20)
229	-0.87(31)	-0.86(50)	0.5026(22)

NUCLEAR FACTOR IN Ra

А	Ν	Ι	d _{nuc} , expt	d _{nuc} , sp
211	123	5/2	1.39	1.30
213	125	1/2	1.72	1.76
221	133	5/2	1.67	
223	135	3/2	1.25	
225	137	1/2	1.24	
227	139	3/2	1.44	
229	141	5/2	1.30	

FACTORIZATION in Cd

Experimental data are from:N. Frömmgen et al., Eur. Phys. J. D 69, 164 (2015);D. T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013) and references therein

FACTORIZATION in Cd

Experimental data are from:

N. Frömmgen et al., Eur. Phys. J. D 69, 164 (2015);

D. T. Yordanov et al., Phys. Rev. Lett. 110, 192501 (2013) and references therein

FACTORIZATION in Fr

Experimental data are from:

R. Collister, et al., PR A 90, 052502 (2014); J. Zhang, et al., PRL 115, 042501 (2015); A. Voss et al., PR C 91, 044307 (2015) and references therein

SUMMARY

- 1. Анализ RHFA позволяет уточнить значения μ (для Au до 15%) и дать надежную оценку его погрешности.
- 2. ML rule не должно использоваться для оценки RHFA (кроме Hg).
- «Правило Экштрёма» для вычисления µ в ядрах золота плохо обосновано, заведомо занижает погрешности и должно быть заменено анализом DHFA. Практически все измеренные прежде магнитные моменты ядер золота должны быть пересчитаны с учетом RHFA или же их погрешности должны быть пересмотрены.
- 4. «Новый» метод извлечения RHFA из экспериментальных данных в сочетании с атомными расчетами позволяет расширить наше знание о распределении намагниченности на ядра удаленные от стабильности.
- 5. Данные для цепочек ядер Cd и Fr демонстрируют заметное «нарушение» факторизации. Дальнейшие экспериментальные и теоретические исследования должны объяснить эти эффекты или показать их отсутствие.

SUMMARY

- 1. The analysis of RHFA gives more accurate values for μ and reliable estimation of their uncertainty.
- 2. ML rule does not work in many cases and should be used with caution. The spectacular success of the ML rule for several Hg, Au, Ir nuclei remains unexplainable.
- 3. Ekström prescription for µ determination in Au nuclei is based on the dubious grounds and should be replaced by the direct accounting for the RHFA. Nearly all previously derived magnetic moments in gold nuclei should be recalculated or, at least, the corresponding uncertainties should be revised
- 4. "New" method of the RHFA-values extraction from the experimental data in combination with the advanced atomic calculations enables one to extend our knowledge of RHFA to far from stability nuclei.
- 5. From the analysis of the available data for Cd and Fr isotopic chains marked "violations" of the factorization approximation were found. Experimental and theoretical works are necessary to confirm (explain) or reject these departures from one of the fundamental premises of the HFA theory.

SYSTEMATICS of $g(\pi h_{11/2})$

$$\left\langle \psi \left| \mu \right| \psi \right\rangle = \left\langle 0^{+} \otimes h_{11/2} \right| \mu \left| 0^{+} \otimes h_{11/2} \right\rangle + \alpha \left\langle 0^{+} \otimes h_{11/2} \right| \mu \left| 1^{+} \otimes h_{11/2} \right\rangle$$

