В поисках моста изомер тория-229

Мотивация

Особенности осциллятора

- Малая естественная ширина линии
- Малый размер, экранировка электронами
- Энергия перехода в оптическом диапазоне
- Влияние химического окружения на распад
- Зависимость от сильного взаимодействия

Приложения:

Метрология, техника, фундаментальная физика, космология

- Улучшение точности и стабильности.
- Твердотельный стандарт частоты.
- Мессбауэровская спектроскопия в оптическом диапазоне
- Проверка стабильности фундаментальных констант

Требуется

Техника генерации, регистрации и заселения изомера.

Ближайшие задачи (@семинар ПИЯФ 2013)

Генератор ионов тория (LMU 2015-2017)

Эксперимент LMU

Eur. Phys. J. A (2020) 56:277 Lars von der Wense, Benedict Seiferle

B.Seiferle et al, Nature v573, 243

LMU 2019

Eur. Phys. J. A (2020) 56:277

F. F. Karpeshin and M. B. Trzhaskovskaya Phys. At. Nucl., 2015, v78(6)715

F.F.Karpeshin, M.B.Trzhaskovskaya NPA 1010 (2021) 122173

Подстройка атомной оболочки

Выбор начальной конфигурации, параметры среды, магнитное и электрическое поля, молекулы, примесные уровни. /Карпешин ЭЧАЯ т37(2)/

Выбор начальной конфигурации

Th⁺ *метастабильные состояния*

[9/2], 6*d*²7*s* 0.77eV, 10⁴s;

[7/2], 6d²7s, 0.5eV;

[5/2], 6*d*²7*s*, 0.19eV;

[15/2] 5*f* 6*d*² 3.75eV , 0.4 s;

Collisional quenching 6*d*²7*s* 1521 5/2 in Th+ 63(3) s⁻¹Pa⁻¹ (Oscar-Andrey Herrera-Sancho PhD thesis 2012)

Заселение

- Лазерная накачка
- При перезарядке
- Столкновения

Подстройка атомной оболочки

параметры среды (давление, температура) магнитное и электрическое поля

Figure 4. R(3/2) ($\nu = 18575.4762 \text{ cm}^{-1}$) line of the $[18.6]\Omega = 3/2 - X^2 \Delta_{3/2}(\nu',0)$ band of ThF recorded field-free and in the presence of a 1500 V/cm electric field with parallel ($\Delta M_J = 0$) and perpendicular ($\Delta M_J = \pm 1$) polarizations. Also shown are the energy level pattern and assignment.

J. Phys. Chem. A 2019, 123, 1423–1433

Optical Stark and Zeeman Spectroscopy of Thorium Fluoride (ThF) and Thorium Chloride (ThCl)

Подстройка атомной оболочки

Генерация ионов Th⁺

Генератор ионов тория

Вакуумная схема

Заключение

Цели на первом этапе

- Время жизни изомера в однозарядном ионе.
- Зависимость времени жизни изомера от давления и температуры.
- Наличие временных компонент распада.
- Время жизни изомера в молекулярных ионах (ThF, ThCl).

Реализация этих целей определит возможность использования времени жизни изомера в качестве наблюдаемой при подстройке атомной оболочки подбором конфигурации или наложением внешних полей.

Это может значительно увеличить вероятность заселения изомера лазерным излучением.

Некоторые особенности методики

Ионный источник

Сбор с инжекцией электронов

- Быстрая и эффективная эвакуация ионов
 - Большая эффективная площадь источника
 - Меньшее давление быстрая эвакуация
 - Нет необходимости в кондиционировании
- Манипуляция зарядом ионов, быстрая эвакуация новообразованных ионов.

На первом этапе

- Время жизни изомера в однозарядном ионе.
- Зависимость времени жизни изомера от давления и температуры.
- Наличие временных компонент распада.
- Время жизни изомера в молекулярных ионах (ThF, ThCl).

	²³³ U	²²⁹ Th	^{229/229m} Th ⁺ /s	²²⁹ Th ⁺⁺ /s	²²⁹ Th ⁺⁺⁺ /s
PNPI (2020)	1.5MBq	-	(50000/1000)	(50000/1000)	(10000/200)
JYFL (2006)	0.38MBq	-	2500/(50)	1000/(50)	300/(6)
LMU (2016)	0.3MBq	-	500/?	10000/200	10000/200
МИФИ	-		~250		/3000
26 мая 2021 г.					

2002 Транспорт ионов в электронном облаке 啶 🌘

Газовая ячейка с электродами и электронным эмиттером

Без объемного заряда

Особенности:

- Поле генерируется объемным зарядом
- •Поле более однородно
- •Поле не экранируется в слабой плазме

6*10⁸ e/cm³ (100µA)

1 Апреля?

Энергия начального состояния, эВ (относительно объемного 2р₃₂ уровня)

EU grant (DE, AT, US) € 13 789 990, 2020-2026 **«Thorium nuclear clocks for fundamental tests of physics**» <u>https://cordis.europa.eu/project/id/856415</u>

МИФИ, 2013

«Разработка метода первичного и вторичного лазерного охлаждения ионов тория для создания физических основ прецизионного стандарта частоты нового поколения на ядерном изомерном переходе в изотопе тория-229» Бюджетные средства 39,6 млн, внебюджетные средства 4,4 млн Экспир, экспертиза 481

МИФИ, 2018

РНФ 19-72-30014, 2019-2022. 30+28+26+24+...=108+... млн.р.

«Разработка стандарта времени и частоты на базе уникального оптического перехода в ядре тория-229»

https://poisknews.ru/skript/49702/