Application of Calorimetric Low Temperature Detectors for the Investigation of Z-Yield Distributions of Fission Fragments and for other Research Topics

GSI

FAIR

Peter Egelhof

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany and University Mainz, Germany

Seminar

PNPI Gatchina, Russia November 28, 2017 Application of Calorimetric Low Temperature Detectors for the Investigation of Z-Yield Distributions of Fission Fragments and for other Research Topics

FAIR

I. Introduction

GSI

- II. Detection Principle and Basic Properties of Calorimetric Low Temperature Detectors (CLTD`s)
- III. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance
- IV. Investigation of Z-Yield Distributions of Fission Fragments
- V. Other Applications in Heavy Ion Physics
- VI. Conclusions

interaction of radiation with matter:

primary: ionization, ballistic phonons (conventional ionisation detectors)

secondary: thermalization:

conversion of energy to heat

 \Rightarrow detection of thermal phonons

 \Rightarrow <u>calorimetric detectors</u>

- energy linearity
- detection threshold
- radiation hardness
- \Rightarrow various applications in many fields of physics

Applications of Low Temperature Detectors - an Overview

Astrophysics:

- dark matter
 ⇒ low detection threshold
- cosmic x-rays
 ⇒ high energy resolution

Particle physics:

- $\beta\beta0\nu$ -decay \Rightarrow absorber = source (¹³⁰Te)
- neutrino mass from β endpoint determ. \Rightarrow absorber = source (¹⁸⁷Re)

Atomic and Nuclear physics:

- X-ray detection
 ⇒ high energy resolution
- Ion detection
 - \Rightarrow high energy resolution
 - \Rightarrow good energy linearity

Applied physics:

- x-ray material analysis
 ⇒ high energy resolution
- life sciences (MALDI)
 ⇒ high energy resolution

for more detailed information see:

- Cryogenic Particle Detection, Topics in Applied Physics 99 (2005)
- Proceedings 16th Int. Workshop on Low Temperature Detectors, JLTP 184 (2016), ~300 participants!

Low Temperature Detectors (LTD`s) for Atomic, Nuclear and Particle Physics

needed for atomic, nuclear and particle physics:

- \Rightarrow energy sensitive detectors for x-rays, γ -rays
- \Rightarrow energy sensitive detectors for particles
- the concept of LTD`s provides substantial advantage over conventional detection schemes with respect to basic detector properties:
 - \Rightarrow energy resolution
 - \Rightarrow energy linearity
 - \Rightarrow detection threshold
 - \Rightarrow dynamic range
 - \Rightarrow radiation hardness
 - LTD's have a large potential for various applications in basic and applied Heavy Ion Research:
 - \Rightarrow Nuclear Structure and Astrophysics
 - \Rightarrow Atomic Physics
 - \Rightarrow Symmetries and Basic Interactions
 - \Rightarrow Interaction of Radiation with Matter

II. Detection Principle and Basic Properties of Calorimetric Low Temperature Detectors (CLTD`s)

detection principle:

thermal signal:

 $\begin{array}{lll} \mbox{amplitude:} & \Delta T = E/C & (C = c \bullet m = heat \mbox{ capacity}) \\ \mbox{rise time:} & \tau_1 \geq \tau_{therm} & (\approx 1-10 \ \mu sec) \\ \mbox{fall time:} & \tau_2 = C/k & (\approx 100 \ \mu sec - 10 \ m sec) \end{array}$

Optimization of the Sensitivity

a) <u>absorber</u>: maximum sensitivity $\Delta T = E/mc$ for

- small absorber mass m
- small specific heat c

due to: $c = \alpha T + \beta (T/\theta_D)^3$ (θ_D = Debye-temperature) electrons lattice

 \Rightarrow low operating temperature \Rightarrow "low-temperature detector"

(α T dominating for T \leq 10K \Rightarrow insulators (α = 0) or superconductors)

- b) <u>thermometer:</u> for thermistor (bolometer): $\Delta T \rightarrow \Delta R \rightarrow \Delta U^{R}$ \Rightarrow maximum sensitivity for large dR/dT
- semiconductor thermistor

due to appropriate doping \Rightarrow exponential behavior of R(T)

- superconducting phase transition thermometer

Potential Advantage over Conventional Detectors

- <u>small energy gap ω</u>
 - \Rightarrow better statistics of the detected phonons

semiconductor detector:
$$\omega \approx 1 \text{ eV}$$

calorimetric detector: $\omega \leq 10^{-3} \text{ eV}$
$$\frac{\Delta E_{calorimeter}}{\Delta E_{semicond.det.}} = \sqrt{\frac{N_{electr.}}{N_{phon.}}} = \sqrt{\frac{\omega_{phon}}{\omega_{electr.}}} \leq \frac{1}{30}$$

- more complete energy detection ⇒ better linearity and resolution energy deposited in phonons <u>and</u> ionisation contributes to the signal (for ionisation detectors: losses up to 60-80% due to: - recombination - direct phonon production)
- <u>small noise power</u> at low temperatures
- method independent on absorber material
 - \Rightarrow optimize radiation hardness, absorption efficiency, etc.

Theoretical Limit for the Energy Resolution

for ideal calorimetric detector:

- thermodynamic fluctuations (quantum statistics)
- Johnson noise
- amplifier noise

example: 1 MeV particle in a 1 mm³ sapphire absorber

Т	С	ΔT	ΔE_{theor}
300 K	3 ● 10 ⁻³ J/K	5 • 10 ⁻¹¹ K	1.8 GeV
10 K	4 • 10 ⁻⁷ J/K	4 • 10 ⁻⁷ K	700 keV
<u>1 K</u>	4 • 10 ⁻¹⁰ J/K	<u>0.4 mK</u>	<u>2.2 keV</u>
100 mK	4 • 10 ⁻¹³ J/K	400 mK	7 eV

 \Rightarrow for low temperature: <u>microscopic</u> particle affects the properties of a <u>macroscopic</u> absorber

Theoretical Limit for the Energy Resolution

for ideal calorimetric detector:

- thermodynamic fluctuations (quantum statistics)
- Johnson noise
- amplifier noise

$$\Rightarrow < \Delta E >= \xi \bullet \sqrt{k_B T^5 c m} \quad 1 < \xi < 3$$
noise thermodynamic fluctuations

example: 50 keV X-ray, 1 mm² tin absorber with a thickness of 50 µm

Т	С	ΔT	$\Delta \mathbf{E}_{theor.}$
300 K	8·10 ⁻⁵ J/K	1.10 ⁻¹⁰ K	295 MeV
1 K	1,2·10 ⁻⁹ J/K	6,7·10⁻ ⁶ K	3,8 keV
<u>0,1 K</u>	1,2·10 ⁻¹² J/K	<u>6,7⋅10⁻³ K</u>	<u>12 eV</u>
0,05 K	1,5·10 ⁻¹³ J/K	5,3·10 ⁻² K	2 eV

(theoretical limit for a conventional semiconductor detector: $\Delta E_{theor} = 350 \text{ eV}$)

 \Rightarrow for low temperature: <u>microscopic</u> photon affects the properties of a <u>macroscopic</u> absorber

III. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance

III. CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance

<u>thermometer:</u> aluminium-film (d = 10 nm), $T_C \approx 1.5^{\circ}$ K (in the range of a ⁴He-cryostat) (for impedance matching to the amplifier: \Rightarrow meander structure)

readout: conventional pulse electronics +Flash-ADC`s +Digital Filtering

New Large Solid Angle Detector Array

number of pixels: 25

active area: 15 X 15 mm²

CLTD`s for High Resolution Detection of Heavy Ions - Design and Performance

detector performance: response to ³²S ions @ 100 MeV

systematical investigation of energy resolution:

with UNILAC-beam: with ESR-beam: with Tandem-beam: for ²⁰⁹Bi, E = 11.6 MeV/u $\Rightarrow \Delta E/E = 1.8 \times 10^{-3}$ for ²³⁸U, E = 360 MeV/u $\Rightarrow \Delta E/E = 1.1 \times 10^{-3}$ for ¹⁵²Sm, E = 3.6 MeV/u $\Rightarrow \Delta E/E = 1.6 \times 10^{-3}$

 \Rightarrow for heavy ions: \geq 20 x improvement over conventional Si detectors

Comparison of Detector Performance: CLTD – Conventional Si Detector

for conventional ionization detector:

high ionization density leads to charge recombination (E- and Z- dependent)

- \Rightarrow pronounced pulse height defects \Rightarrow nonlinear energy response
- \Rightarrow fluctuation of energy loss processes \Rightarrow limited energy resolution

Applications of CLTD`s in Heavy Ion Physics

- High Resolution Nuclear Spectroscopy
- Investigation of Stopping Powers of Heavy Ions in Matter
- In-Flight Mass Identification of Heavy Ions by E-TOF
- Accelerator Mass Spectrometry
- Lamb Shift Measurements in Hydrogen-Like Heavy Ions
- Investigation of Z-Yield Distributions of Fission Fragments

IV. Investigation of Z (Nuclear Charge)-Yield Distributions of Fission Fragments

- fission of ²³⁵U, ²³⁹Pu,²⁴¹Pu induced by thermal neutrons:
 - \Rightarrow capture of a thermal neutron
 - \Rightarrow binary scission
 - ⇒ about 85% (~170 MeV) of the energy released is transferred to the kinetic energy of the fragments

- motivation for studying properties of fission fragments:
 - \Rightarrow better understanding of the nuclear fission process
 - (for example:odd-even staggering determines fission mode)
 - \Rightarrow test of theoretical predictions
 - \Rightarrow information about nuclear structure (shell effects, pair breaking, ...)
 - \Rightarrow data relevant for reactor physics
 - (for example: reactor antineutrino anomaly)

Investigation of Z-Yield Distributions of Fission Fragments a) Idea of the Experiment and Experimental Setup

- produce fission fragments by $n \rightarrow {}^{235}U_{,}{}^{239,241}Pu$ at the high flux research reactor of the ILL Grenoble
- select mass and energy in the LOHENGRIN mass separator
- identify Z by using the Z-dependent energy loss in an energy degrader (absorber method, see also U. Quade et al., NIM A164 (1979) 436
 U. Quade et al., Nucl. Phys. A487 (1988),1

 measure E_{rest} in a high resolving CLTD (instead of conventional ionization chamber limited by: energy resolution and pulse height defect) Methods for Determination of Z-Yield Distributions of Fission Fragments

- Radio chemistry \Rightarrow restricted to particular nuclides
- γ-spectroscopy
- ⇒ disadvantage: indirect method (depends on knowledge of level schemes, branching ratios, lifetimes)
- Passive Absorber Method

U. Quade et al., Nucl. Phys. A487 (1988) 1

Idea of the Experiment: Investigation of Z (nuclear charge) Distributions of Fission Fragments

The LOHENGRIN Mass Separator at ILL Grenoble, France

- production of fission products by n → U, Pu
- separation according to A/Q (magnetic field) and E/Q (electric field)
- but no Z –selectivity!!

Feasibility Studies at the Munich Tandem Accelerator

 from the Tandem Accelerator:
 ⇒ stable beams of ¹⁰⁹Ag (E = 80 MeV) and ¹²⁷I (E = 68.7 MeV) (at same velocity)

- \Rightarrow first test of the new 25 pixel array
- \Rightarrow check of quality of Z separation dependent on:
 - type of absorber foil
 - thickness of absorber foil
 - homogenity of absorber foil
 - amount of energy straggling

- 25 pixel CLTD array
- individual temperature stabilization
- active area ~ (15x15)mm²

Energy Loss of ¹⁰⁹Ag in Si₃N₄ for different Thickness of the Absorber Foil

FWHM for different Types of Absorber Foils

as compared to previously used Parylene C

Experimental Setup at the ILL Reactor

- absorber foil: Si₃N₄
 good homogenity, small E- straggling
- manipulator for variable foil thickness (1-8 μm) for otimizing Zresolution for different Z and E
- absorber foil integrated in cryostat for optimized efficiency

Investigation of Z-Yield Distributions of Fission Fragments b) Results

- end of 2016: 5 weeks of beamtime at ILL
- rich harvest: Z-Yield Distributions for 3 Targets and 51 Masses

 ${}^{235}U(n_{th},f) (A=89,92,96,104-110,132.140) \\ {}^{241}Pu(n_{th},f) (A=89-91,92,96,97-112) \\ {}^{239}Pu(n_{th},f) (A=92,96,109-113, 128-137,139)$

Quality of Z-Separation (figure of merit) dependent on Nuclear Mass A and Charge Z

quality of separation ~ $Z/\Delta Z$ with $\Delta Z \coloneqq \frac{\delta E(Z) - \delta E(Z-1)}{FWHM}$

- CLTD + Si_3N_4 (present data)
- CLTD + Si₃N₄ (test at Garching)
- IC + Parylene-C (Quade et al.)
- IC + Parylene-C (prediction by Bocquet et al.)

Quality of Z-Separation (figure of merit) dependent on Nuclear Mass A and Charge Z

- fit of spectrum
 - \Rightarrow relative Z-Yield
 - \Rightarrow line shape from Tandem
 - experiment (one single Z)

- fit of spectrum
 - \Rightarrow relative Z-Yield
 - \Rightarrow line shape from Tandem
 - experiment (one single Z)
- Z-Identification

- fit of spectrum
 - \Rightarrow relative Z-Yield
 - \Rightarrow line shape from Tandem
 - experiment (one single Z)
- Z-Identification
- take into account
 ⇒ energy dependence

- fit of spectrum
 - \Rightarrow relative Z-Yield
 - \Rightarrow line shape from Tandem
 - experiment (one single Z)
- Z-Identification
- take into account
 - \Rightarrow energy dependence
 - \Rightarrow electronic charge state
 - dependence (isomeric states)

- fit of spectrum
 - \Rightarrow relative Z-Yield
 - \Rightarrow line shape from Tandem
 - experiment (one single Z)
- Z-Identification
- take into account
 - \Rightarrow energy dependence
 - \Rightarrow electronic charge state
 - dependence (isomeric states)
- absolute normalization
 ⇒ target burnup

Counts/bin

- fit of spectrum
 - \Rightarrow relative Z-Yield
 - \Rightarrow line shape from Tandem
 - experiment (one single Z)
- Z-Identification
- take into account
 - \Rightarrow energy dependence
 - \Rightarrow electronic charge state
 - dependence (isomeric states)
- absolute normalization
 ⇒ target burnup
 - for Z-Yield for one mass: \Rightarrow about 300 spectra to be analyzed

Motivation for investigating Mass 92: The Reactor Antineutrino Anomaly

 \Rightarrow 5.7% deficit of measured antineutrinos as expected from β -decay data of fission fragments

possible explanations: $\Rightarrow 4^{th}$ non standard "sterile" neutrino \Rightarrow wrong Z-yields of fission fragments

Motivation:

PHYSICAL REVIEW C 91, 011301(R) (2015)

A. A. Sonzogni, T. D. Johnson, and E. A. McCutchan

National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 8 August 2014; revised manuscript received 25 November 2014; published 8 January 2015)

Antineutrino spectra following the neutron induced fission of ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu are calculated using the summation approach. While each system involves the decay of more than 800 fission products, the energy region of the spectra most relevant to neutrino oscillations and the reactor antineutrino anomaly is dominated by fewer than 20 nuclei, for which we provide a priority list to drive new measurements. The very-high-energy portion of the spectrum is mainly due to the decay of just two nuclides, ⁹²Rb and ⁹⁶Y. The integral of the signal measured by antineutrino experiments is found to have a dependence on the mass and proton numbers of the fissioning system. In addition, we observe that ~70% of the signal originates from the light fission fragment group and about 50% from the decay of odd-Z, odd-N nuclides.

> The ⁹²Rb cumulative fission yield following the thermal fission of ²³⁵U definitely merits a new measurement. While
Results on ⁹²Rb

A. A. Sonzogni et al., Phys. Rev. C91 (2015) 011301 (R)

TABLE III. Same as Table II, except the strongest contributors from 235 U at 5.5 MeV are summarized.

Nuclide	Q_{β} (MeV)	GS BR (%)	$J_{gs}^{\pi} ightarrow J_{gs}^{\pi}$	Contr. (%)
² Rb	8.1	95.2(7)	$0^- ightarrow 0^+$	21.6
⁶ Y	7.1	95.5(5)	$0^- ightarrow 0^+$	14.5
⁴² Cs	7.3	56(5)	$0^- ightarrow 0^+$	6.8
⁰⁰ Nb	6.4	50(7)	$1^+ \rightarrow 0^+$	4.7
³ Rb	7.5	35(3)	$5/2^- \rightarrow 7/2^+$	4.6
⁰ Rb	6.6	33(4)	$0^- ightarrow 0^+$	3.4
8m Y	9.0	12(5) ^a	$(4,5) \rightarrow 4^+$	2.8
⁴⁰ Cs	6.2	36(2)	$1^- \rightarrow 0^+$	2.4
¹ Kr	6.8	18(3) ^b	$5/2^{(+)} \rightarrow (5/2^{-})$	2.4

^aStrongest branch to a low-lying state is to a 4⁺, 1843-keV level. ^bStrongest branch is to a (5/2⁻), 109-keV level.

for ²³⁵U target: contribution of ⁹²Rb to the β -spectrum at 5.5 MeV

 \Rightarrow JEFF data basis: 21.6%

 \Rightarrow Tipnis et al. 30.0%

A. A. Sonzogni et al.:

The ⁹²Rb cumulative fission yield following the thermal fission of ²³⁵U definitely merits a new measurement.

JEFF Report: M.A. Kellett et al., Nucl. Energy Agency, OECD,2009 S.V. Tipnis et al., Phys. Rev. C58 (1998) 905

⁹²Rb data for ²³⁹Pu and ²⁴¹Pu targets and
 ⁹⁶Y data for all 3 targets to be analysed

Results on ²⁴¹Pu covering the Symmetry Region: Mean Z

mean nuclear charge <Z>

deviation from "democratic" distribution of neutron excess Z_{UCD} - <Z> , Z_{UCD} = 94/242 X A

Motivation:

- \Rightarrow How behaves the even-odd staggering in the transition to the symmetry region?
- \Rightarrow Is there a change in the fission mode?

data for ²³⁹Pu target in the symmetry region to be analysed

Santwana Dubey^{1,2}, Victor Andrianov³ Shawn Bishop⁴, Aurelin Blanc⁶, Artur Echler^{1,2,3}, Peter Egelhof^{1,2}, Herbert Faust⁶, Friedrich Gönnenwein⁵, Patrick Grabitz^{1,2}, Jose Gomez⁴, Ulli Köster⁶, Saskia Kraft-Bermuth³, Werner Lauterfeld², Manfred Mutterer⁵, Pascal Scholz³, S. Stolte²

¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
²Johannes Gutenberg Universität, Mainz, Germany
³Justus-Liebig-Universität, Gießen, Germany
⁴Technische Universität München, Germany
⁵Universität Tübingen, Germany
⁶Institut Laue-Langevin, Grenoble, France

V. Other Applications of CLTD`s in Heavy Ion Physics

- High Resolution Nuclear Spectroscopy
- Investigation of Stopping Powers of Heavy Ions in Matter
- In-Flight Mass Identification of Heavy Ions by E-TOF
- Accelerator Mass Spectrometry
- Lamb Shift Measurements in Hydrogen-Like Heavy Ions
- Investigation of Z-Yield Distributions of Fission Fragments

Applications: a) High Resolution Nuclear Spectroscopy

nuclear spectroscopy:

- elastic and inelastic scattering \Rightarrow separation of inelastic channels
- nuclear reactions

 \Rightarrow separation of inelastic channels \Rightarrow identification of reaction channels

Example:

investigation of giant resonances (collective excitation of nuclear matter)

J. Meier et al. Nucl. Phys. A 626 (1997) 451c ^{Nat}Pb (²⁰Ne, ²⁰Ne'), E = 100 MeV/u (CLTD adjusted to range of Ne ions)

potential applications:

- \Rightarrow investigation of multi phonon giant resonances
- \Rightarrow reactions at low energies (LEB at FAIR)

Applications:

b) Investigation of Stopping Powers of Heavy Ions in Matter

<u>motivation:</u>

example: stopping power of ²³⁸U-ions in gold (SRIM-prediction)

energy loss processes:

- electronic stopping power
 - = ionization of target atoms
- nuclear stopping power
 - = elastic scattering on target nuclei

important: theoretical understanding

- basic science:
 - > interaction of energetic particles with matter
- applied science:
 - material science
 - investigation of radiation damage
 - \succ medicine \rightarrow tumor therapy
 - ▶ ...

problem:

accuracy of theoretical models unsatisfactory

- \Rightarrow predictions by semi-empirical computer codes
 - use best fits on experimental data (example: SRIM)
- \Rightarrow many data needed for different kind of
 - ➤ targets, projectiles, energies

in particular:

data for very slow and very heavy ions are still scarce

The TOF – CLTD Spectrometer - A New Experimental Method for dE/dx Measurements

as compared to previous measurements with

conventional energy detector

(for example: Trzaska et al., Zhang et al.):

- \Rightarrow by use of CLTD's as energy detector:
 - ➤ improved energy resolution → higher sensitivity
 - improved energy linearity (no pulse height defect)
 - \rightarrow reduced energy calibration errors

Stopping Power Measurements at GSI and JYFL

UNILAC accelerator (GSI, Darmstadt) 0.1 – 1.4 MeV/u ²³⁸U ions in Cund Au-targets

K-130 cyclotron (JYFL, Jyväskylä) 0.05 – 1 MeV/u ¹³¹Xe ions in C-, Ni- und Au-targets

Results on Stopping Powers for ¹³¹Xe-Ions in C, Ni and Au

structure in concrete distribution on the magnet

Results on Stopping Powers: 0.05 – 1.0 MeV/u ¹³¹Xe-Ions in C

reference data taken from online database of H. Paul: http://www.exphys.jku.at/stopping/

A. Echler, PHD thesis 2013

and A. Echler et al. Nucl. Instr. Meth. B391 (2017) 38

 substantial deviations from SRIM-predictions (semiempirical calculations)

experimental uncertainties:

(improvement of factor 2-3)				
 total: 	3 – 4 %			
(lowest energies: <2 %)				
 statistics: 	<0.5 %			
 target foils: 	3 %			
 detector-cal.: 	<1 %			

- ➤ agreement with Geissel et al.
- deviations from data from
 Trzaska et al. and Pape et al.
- data extended to lower energies

Stopping Power Measurements – Effect of Channeling: Xe in Au

for thin Ni- and Au-targets: → double-peak structure in measured energy loss

A. Echler, PHD thesis 2013 andA. Echler et al.,Nucl. Instr. Meth. B391 (2017) 38

 \Rightarrow new data on channeling energy loss obtained \Rightarrow source of systematic error identified and eliminated X-Ray Diffraction Analysis of the Absorber Foils

Is the interpretation of the data correct? channeling appears only in crystalline absorbers! problem: targets not grown as single crystals

the X-ray analysis confirms polycrystalline structure in Ni and Au foils

the channeling effect is enhanced due to much stronger multiple scattering for random energy loss Results on Stopping Powers: 0.09 – 1.0 MeV/u ¹³¹Xe-Ions in Ni (only Random Energy Loss)

experimental uncertainties:

 detectorcal.: 	<1 %
 target foils: 	3 %
 statistics: 	<1 %
(lowest energies:	<2%)

- total: 3 4 %
- substantial deviations from SRIM-predictions
- > agreement with Geissel et al.
- deviations from data of Trzaska et al. for low energies

 Investigation of Heavy Ion Channeling in Single Crystals (A. Bräuning- Demian et al., C. Trautmann et al.)

 Investigation of Charge Exchange Energy Straggling (proposed by H. Geissel et al.)

Applications: c) In-Flight Mass Identification of Heavy Ions

important for many applications: isotope mass identification

for conventional setups: mass resolution is limited by energy resolution! \Rightarrow calorimetric detectors

In-Flight Mass Identification

measured at Tandem accelerator at MPI in Heidelberg

energy
$$\Rightarrow E$$

TOF $\Rightarrow v$ $\rightarrow t$ $m = \frac{2E}{v^2}$
 $\left(\frac{\Delta m}{m}\right)^2 = \left(\frac{\Delta E}{E}\right)^2 + \left(2\frac{\Delta t}{t}\right)^2$

 $\Delta t = 680 \text{ ps}$

 $\Delta E = 330 \text{ keV}$

limitation in this experiment: TOF measurement !

A. Echler PHD Thesis 2013

High Resolution In-Flight Mass Identification: Results for ¹³¹Xe-Ions

A. Echler, PHD Thesis 2013

In-Flight Mass Identification: Results for ²³⁸U-Ions

➤not reachable with conventional E-ToF system

➤advantage to Bp-ToF method: • high dynamic range

not affected by charge state ambiguities

A. Echler, PHD Thesis 2013

In-Flight Mass Identification for:

- identification of reaction products from <u>reactions with radioactive beams</u> (for slow heavy ions: no charge state ambiguities, high dynamic range)
 - \Rightarrow potential application at NUSTAR@FAIR: LEB
 - \Rightarrow investigation of deep inelastic transfer reactions (proposed by S. Heinz)
- identification of isotopes after <u>in-flight gamma spectroscopy</u>
 - ⇒ potential application at NUSTAR@FAIR: HISPEC (LYCCA)
- identification of superheavy elements (for Z ≥ 113: decay chain does not feed a known α-chain): Δm ≤ 1 for m = 300 reachable
- identification of rare isotopes in <u>accelerator mass spectrometry</u>
 - \Rightarrow high sensitivity

first experiment performed: trace analysis of 236U at the VERA facility at Vienna: **S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304**

transparency from J. Gerl

In-Flight Mass Identification for:

- identification of reaction products from <u>reactions with radioactive beams</u> (for slow heavy ions: no charge state ambiguities, high dynamic range)
 - \Rightarrow potential application at NUSTAR@FAIR: LEB
 - \Rightarrow investigation of deep inelastic transfer reactions (proposed by S. Heinz)
- identification of isotopes after <u>in-flight gamma spectroscopy</u>
 - ⇒ potential application at NUSTAR@FAIR: HISPEC (LYCCA)
- identification of superheavy elements (for Z ≥ 113: decay chain does not feed a known α-chain): Δm ≤ 1 for m = 300 reachable
- identification of rare isotopes in <u>accelerator mass spectrometry</u>
 - \Rightarrow high sensitivity

first experiment performed: trace analysis of 236U at the VERA facility at Vienna: **S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304**

Identification of Superheavy Elements

Application for Identification of Superheavy Elements

for Z \geq 112: decay chains do not feed a known α -chain \Rightarrow mass identification of the superheavy nucleus required

First Test Experiment at SHIP

S. Kraft-Bermuth, PHD Thesis (2004) (in cooperation with: D. Ackermann, F.Hessberger, S. Hofmann, G. Münzenberg)

reaction: ${}^{58}Ni + {}^{102}Ru \Rightarrow {}^{160}Hf^* \Rightarrow {}^{155(156)}Yb + 2p + 2(3)n$

 \Rightarrow dynamic range sufficient to detect heavy ion and its α -decay time-resolved

In-Flight Mass Identification for:

- identification of reaction products from <u>reactions with radioactive beams</u> (for slow heavy ions: no charge state ambiguities, high dynamic range)
 - \Rightarrow potential application at NUSTAR@FAIR: LEB
 - \Rightarrow investigation of deep inelastic transfer reactions (proposed by S. Heinz)
- identification of isotopes after <u>in-flight gamma spectroscopy</u>
 - ⇒ potential application at NUSTAR@FAIR: HISPEC (LYCCA)
- identification of superheavy elements (for Z ≥ 113: decay chain does not feed a known α-chain): Δm ≤ 1 for m = 300 reachable
- identification of rare isotopes in <u>accelerator mass spectrometry</u>
 - \Rightarrow high sensitivity

first experiment performed: trace analysis of 236U at the VERA facility at Vienna: **S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304**

Application of CLTD's in Accelerator Mass Spectrometry (AMS)

application for Accelerator Mass Spectrometry:

(in collaboration with: R. Golser, W. Kutschera et al., VERA facility, Vienna)

aim: determination of very small isotope ratios ²³⁶U/²³⁸U in natural uranium samples

 \Rightarrow ²³⁶U known as monitor for flux of thermal neutrons

(for example: investigation of Natural Reactors in Uranium Mines)

<u>results:</u>

substantial improvement in background discrimination and detection efficiency

 \Rightarrow level of sensitivity improved by one order of magnitude:

 $^{236}\text{U}/^{238}\text{U} = 7 \text{ x } 10^{-12}$

S. Kraft-Bermuth et al. Rev. Sci. Instr. 80 (2009) 103304

Other Applications in Heavy Ion Physics: d) QED Tests by High Resolution X-Ray Spectroscopy

x-ray

Pb, Sn

detection scheme:

- 36 pixel Si thermistors (from NASA/Goddard)
- Sn, Pb absorbers
- each pixel:
- $\approx 0.5 \text{ mm}^2 \text{ x } 85 \text{ } \mu\text{m}$
- -- operated at 50 mK

detector performance:

 $-\Delta E = 30 - 40 \text{ eV}$ @ 60 keV (theoretical limit of conventional Si detector: \geq 350 eV)

present status:

- detector with 24 pixels available
- active area: 10 mm²

Perspectives: Test of QED in Extreme Static Electromagnetic Fields

CLTD`s for the Lambshift Experiment on Hydrogen-Like Heavy Ions – Present Status

 $\begin{array}{l} \underline{idea \ of \ the \ experiment:} \\ \Rightarrow most \ sensitive \ test \ of \ QED \ (Z\alpha \rightarrow 1, \ higher \ order \ terms) \end{array}$

CLTD`s for the Lambshift Experiment on Hydrogen-Like Heavy Ions – Results for Pb⁸¹⁺

results of a joint experiment with the Atomic Physic Group (FOCAL crystal spectrometer):

beam: ²⁰⁷Pb⁸²⁺ at 219 MeV/u

overall efficiency: 2.5×10^{-7} (only 3 pixels)

V. Andrianov et al. AIP Conf. Proc. 1185 (2009) 99

result:

 $E(Ly-a1) = (77937 \pm 12_{stat} \pm 25_{syst}) eV$

- good agreement with theory
- systematic uncertainty dominant

CLTD`s for the Lambshift Experiment on Hydrogen-Like Heavy Ions: Results for Au⁷⁸⁺

results:

S. Kraft-Bermuth et al., J Phys. B50 (2017) 055603

result: $E(Ly-\alpha 1) = (71570 \pm 4_{stat} \pm 11_{syst}) eV$ in good agreement with theory: $E(Ly-\alpha 1) = (71569 \pm 1) eV$ \Rightarrow already sensitive test of QED \Rightarrow systematic error to be improved

next steps:

- production run with improved statistic and systematic error (aim: 1 eV accuracy)
- at FAIR: HITRAP (highly charged ions at rest)

Perspectives with HITRAP@FAIR

The 1s-Lamb Shift in Hydrogen-like Ions

contributions to the 1s Lamb Shift:

for U ⁹¹⁺ :	Self Energy:	355 eV (≈ 80%)
	Vacuum Polarization:	-89 eV (≈ -20%)
	Nuclear Size	199 eV (≈ 40%)

determination of nuclear charge radii:

- test QED for stable isotope with known rms-radius
- from Lamb shift measurement for chains of isotopes
 ⇒ determine charge radii with ≤ 1% accuracy

VI. Conclusions

- CLTD's have substantial advantage over conventional detection systems concerning resolution, linearity, etc.
- CLTD's for Heavy Ion Physics have been designed and used successfully for experiments
- the results on Z-yield distributions of fission fragments provide important information for nuclear structure-, reactor- and neutrino physics
- CLTD's were also applied successfully in AMS, stopping power measurements, in-flight mass determination and Lambshift measurements, and have the potential for many further applications, as for example for SHE research