
      Ядерные экранировки в кварковых и 
глюонных распределениях в ядрах: 

теория и приложения 

В.A. Гузей

Семинар Отделения Физики Высоких Энергий, ПИЯФ
24.09.2013

Петербургский Институт Ядерной Физики (ПИЯФ)
НИЦ "Курчатовский Институт", Гатчина

1



План семинара: 

 Нуклоны и атомные ядра в КХД
- открытые вопросы
- партонные распределения в ядрах

 Теория экранировок лидирующего твиста для ядерных     
партонных распределений 
- теория Грибова-Глаубера
- обобщение на случай еА глубоконеупругого рассеяния
- предсказания для ядерных партонных плотностей и структурных      

       функций

 Примеры приложений 
- жесткие процессы в pA рассеянии на БАК
- ультрапериферические AA и pA столкновения на БАК
- программа изучения глюонных распределений в ядрах на EIC

 Заключение
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Ядерная физика: сильные 
взаимодействия и КХД  

 Сильное взаимодействие связывает вместе атомные ядра, определяет 
свойства ядерной материи во Вселенной и обеспечивает ядерные 
реакции.     

 Теория сильного взаимодействия ― 
 квантовая хромодинамика (КХД) ― квантовая 
 теория поля точечно-подобных кварков 
 взаимодействиющих посредством обмена глюонами
 (цветная сила)

 Одной из центральных задач современной ядерной физики 
является выяснение внутренней структуры нуклонов и ядер на 
основе КХД.  
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Ядерная физика: открытые вопросы  

 Как возникает масса протона? → связано с проблемой конфайнмента    

 Поляризационный и орбитальный вклад кварков и 
  глюонов в спин протона? → связано с общей проблемой 
  трехмерных (3D) распределений партонов (TMDs, GPDs)

 Как распределения кварков и глюонов в ядрах отличаются 
  от случая свободного протонa? → 
  объяснение ЕМС эффекта, 

   распределения кварков и глюонов в ядрах,

   насыщение глюонных плотностей 
  
• Как происходит адронизация кварков и глюонов 
   в наблюдаемые адроны (нуклоны, пионы)?
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Экспериментальное изучение кварков и 
глюонов 

• Идеальный инструмент для изучения кварков и глюонов ―
  лептон-нуклонные и лептон-ядерные   
  столкновения при больших энергиях.

• Основные методы ― 
глубоконеупругое рассеяниe 
(deep inelastic scattering, DIS) 
и факторизационные теоремы

• Получаемая картина:

Q2
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Коллинеарная факторизация в КХД 
• Партонная модель (еще не КХД!):

- адроны состоят из неких конституэнтов (партонов)
- сечения (структурные функции) = древесные Фейнмановские диаграммы + 
плотности партонных распределений

- предсказывает скейлинг и объясняет первые эксперименты по DIS на SLAC  

• Физическая картина:
- в системе центра масс время жизни данной 

партонной конфигурации >> времени взаимодействия

- электрон "видит снимок" "замороженных" 
партонов с разрешением 1/Q

- после взаимодействия фрагменты начального 
адрона переходят в наблюдаемые адроны 
за время >> времени взаимодействия ➞
не влияет на электрон-партонное рассеяние

Bjorken and Paschos ’69; 
Feynman ’69 and ’72

Friedman and Kendall ’72 
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Коллинеарная факторизация в КХД (2) 
• Теорема о коллинеарной факторизации в КХД:

- позволяет объяснить партонную модель и систематически посчитать поправки 
- партоны ➞ кварки и глюоны КХД
- доказывается в каждом порядке теории возмущений
- основана на разделении временных шкал/расстояний (предыдыщий слайд):  

Collins, Soper, Sterman ’89

Коэффициентная функция:
- зависит от процесса, конечна
- не зависит от типа мишени

Партонная функция распределения (плотность):
- не зависит от процесса; конечна (содержит все 
коллинеарные расходимости сечения)
- разная для разных мишеней

• Факторизация ➞ формальное определение партонных плотностей

вероятность найти партон с 
данным х и поп. импульсом < µ
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Коллинеарная факторизация в КХД (3) 
• Факторизация ➞ партонные плотности универсальны,т.е. входят в 
описание разных процессов:
- инклюзивное лептон-адронное рассеяние
- процесс Дрелл-Яна 
- инклюзивное рождение адронов

l + p ! l0 +X

hA + hB ! �⇤(ll̄) +X

hA + hB ! hc(pT ) +X

функция фрагментации

• Факторизация ➞ Q2 (DGLAP) эволюция партонных плотностей  

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 299

Fig. 29. The cross sections �
j(H)
soft , �

j(L)
soft , and �

j
2(x,Q

2
0 ) as functions of Bjorken x at fixed Q 2

0 = 4 GeV2. The left panel corresponds to the ū-quark; the right
panel corresponds to gluons.

Fig. 30. The ratio R of Eq. (116) at Q 2
0 = 4 GeV2. The solid curves correspond to �max = 0.5; the dotted curves correspond to �max = 0.1; the dot-dashed

curves correspond to �max = 0.01; the short-dashed curves correspond to �max = 0.001.

To quantify the contributions of different regions of integration over � to �
j
2(x,Q

2), we introduce the ratio R defined as
follows:

R(�max, x) ⌘
R 0.1
x dxP�f D(3)

j/N (�,Q 2
0 , xP)⇥(�max � �)

R 0.1
x dxP�f D(3)

j/N (�,Q 2
0 , xP)

. (116)

The ratio R for the ū-quark and gluon channels at Q 2
0 = 4 GeV2 is presented in Fig. 30. In the figure, the solid curves

correspond to �max = 0.5; the dotted curves correspond to �max = 0.1; the dot-dashed curves correspond to �max = 0.01;
the short-dashed curves correspond to �max = 0.001.

One can infer from Fig. 30 the relative contributions of different �-regions to �
j
2(x,Q

2) and, hence, to nuclear shadowing.
For instance, for x  10�5, the �  0.001-region contributes to nuclear shadowing at most 9% in the quark channel and
16% in the gluon channel. This estimate suggests that even for such small values of Bjorken x, various small-x effects, which
are not included in the DGLAP picture, should not lead to significant corrections in the evaluation of nuclear PDFs.

Another conclusion is that the diffractively produced masses M2
X ⇡ Q 2(1 � �)/� can be large. At very high energies

(small x), one enters the regime analogous to the triple Pomeron limit of hadronic physics, which allows for � ⌧ 1. This
contribution (neglecting the large-� contribution) to the nuclear structure functions at extremely small x was evaluated in
the Color Glass Condensate framework, see, e.g., Ref. [171].

5.1.4. Nuclear antishadowing and DGLAP evolution
By construction, Eq. (64) does not describe nuclear modifications of PDFs for x > 0.1, where such effects as nuclear

antishadowing and the EMC effect take place. However, we need to know nuclear PDFs at our chosen input scale Q 2
0 =

4 GeV2 for a wide range of the values of Bjorken x0, x  x0  1, since we use those nPDFs as an input for the
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution to higher Q 2 > Q 2

0 .
The DGLAP evolution equations for PDFs fj of any target (we use the nucleus) read [77]:
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29 R. Plačakytė, Moriond QCD, 9-16 March 

Deep Inelastic Scattering (DIS)

Structure function factorisation:

determined using
measured cross 

section

calculable in
perturbative QCD

PDFs

PDF scale dependence is calculable in perturbative QCD
(DGLAP evolution):

Probability via splitting functions:

Pqq Pqg Pgq Pgg

each structure function can be written as a convolution of a hard-scattering 
coefficient C and non-perturbative parton distributions:

218 E. Reya,Perturbadve Quantum Chmmodynamics

We are now equipped with most of the theoretical artillery in order to confront renormalization
group improved quantum field theories with experiment. The ideal reactions for applying this formalism
are deep inelastic lepton—nucleon scattering processes where Q2 is large, i.e. a~(Q2)small, and therefore
calculations based on RG improved perturbation theory should become reliable. As we shall see in the
next section all conventional fixed point theories are strongly disfavored by experiment. However, it
should be emphasized that all present measurements of scaling violations in structure functions are
rather insensitive to the gluon content of the nucleon and therefore also to the gluon self-couplings
(triple gluon vertex) which are so very essential for asymptotic freedom.

5. Deep inelastic lepton—nucleon scattering

When a very low mass virtual photon (Q2 —q24 1 GeV2) scatters off a proton, the photon “sees”
only the total charge and magnetic moment of the proton and the scattering appears point-like (fig.
5.1(a)). A higher-mass photon of (a few hundred MeV)2 is able to resolve the individual constituents of
the proton’s virtual pion cloud, as shown in fig. 5.1(b), and the proton appears as a composite extended
object. At high momentum transfers the photon probes the fine structure of the proton charge
distribution and sees its elementary constituents (fig. 5.1(c)); if quarks were non-interacting, no further
structure would appear for increasing Q2 and exact scaling would set in. However, in any renormaliz-
able quantum field theory, we have to introduce a Bose-field (gluon) which mediates the interaction in
order to form for example bound states of quarks, i.e. the observed hadrons. In such a picture, the
quark is then always accompanied by a gluon cloud which will be probed as the momentum transfer is
increased. The effect of gluons is then two-fold as illustrated in fig. 5.1(d): Aquark carrying a fraction x
of the longitudinal momentum of the proton will be seen by the high-Q2 virtual photon with a
momentum fraction smaller than x, just because the radiated gluon carries away some of the quark’s
original momentum; similarly this photon may resolve the radiated gluon into a quark—antiquark
pair — a process to be regarded as quark pair creation in the strong gluon field of the nucleon. Both
effects will distort a given nucleon structure function F(x) to lower x, and specifically quark pair

,~~
(a) (b)

* Q2>m~ * Q2>>m~ *
- ~ q ~ q

p ~ ~‘ _ck!Y)/9 p ~ ~

(c) (d)
Fig. 5.1. The proton as seen by a “microscope” virtual photon: asQ2 increases, (c) aquark may be resolved into (d) a quark andbremsstrahlung gluon g
or into a quark—antiquark pair. Reya ’81

• Коллинеарная факторизация  прекрасно проверена в 
экспериментах (HERA, CERN, Fermilab, BNL, JLAB)
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 Традиционная картина: ядра состоят из 
 слабосвязанных протонов и нейтронов

• Однако эксперименты по слубоконеупругому 
 рассеянию на ядерных мишенях показали, что это не полная картина: 

Ядерные структурные функции 

F2A(x) 6=
Z

A

x

dy

y

n(y)F2N (x/y)

Fig. 3.1. The structure function ratio F!
"
/F!

"
for #$Ca and %&Fe. The data are taken from NMC [72], SLAC [73], and

BCDMS [74].

3.3. Data on nuclear structure functions

In this section we summarize the existing experimental information on nuclear e!ects in
structure functions. Their systematic investigation for light and heavy nuclei has been carried out
so far only in unpolarized scattering experiments. Most of the data come from deep-inelastic lepton
scattering. Modi"cations of nuclear parton distributions have also been studied in other high-
energy processes. We mention, in particular, heavy quark production and Drell}Yan experiments.

3.3.1. Nuclear ewects in F!
"

Experiments on deep-inelastic scattering from nuclei are reviewed in [4,5]. For a discussion of
the data it is convenient to use structure functions which depend on the Bjorken scaling variable for
a free nucleon, x"Q"/(2M!). In charged lepton scattering from unpolarized nuclear targets these
structure functions are de"ned by the di!erential cross section per nucleon:

d""!

dxdQ"
"4!#"

Q# !"1!y!Mxy
2E # F!

"
(x, Q")
x

#y"F!
'
(x,Q")$ . (3.10)

Some time ago the EMC collaboration discovered that the structure function F
"

for iron di!ers
substantially from the corresponding deuteron structure function [75], far beyond trivial Fermi
motion corrections. Since then many experiments dedicated to a study of nuclear e!ects in
unpolarized deep-inelastic scattering have been carried out at CERN, SLAC and FNAL. The
primary aim was to explore the di!erence of nuclear and deuterium structure functions.

Fig. 3.1 presents a compilation of data for the structure function ratio F!
"
/F!

"
over the range

04x41. Here F!
"

is the structure function per nucleon of a nucleus with mass number A, and
F!
"

refers to deuterium. In the absence of nuclear e!ects the ratios F!
"
/F!

"
are thus normalized to

one. Neglecting small nuclear e!ects in the deuteron, F!
"

can approximately stand for the isospin
averaged nucleon structure function, F(

"
. However, the more detailed analysis must include

two-nucleon e!ects in the deuteron. Several distinct regions with characteristic nuclear e!ects

G. Piller, W. Weise / Physics Reports 330 (2000) 1}94 23

Piller, Weise, Phys. Rept. 330 (2000) 1

 4 области: ядерные экранировки (x < 0.05), антиэкранировки (0.05< x <0.2),  
   ЕМС эффект (0.3 < x < 0.8), Ферми-движение (x > 0.8).
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 Стратегия извлечения ядерных партоных распределений:
   данные + факторизационная теорема 
   + DGLAP (Q2) эволюция

Партонные распределения в ядрах  JHEP04(2009)065
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Figure 3. The nuclear modifications RV , RS , RG for Carbon (upper group of panels) and Lead
(lower group of panels) at our initial scale Q2

0 = 1.69 GeV2 and at Q2 = 100 GeV2. The thick black
lines indicate the best-fit results, whereas the dotted green curves denote the error sets. The shaded
bands are computed from eq. (2.13).

The narrow throat in the sea quark uncertainty band at x ∼ 10−2 . . . 10−1 reflects the

good constraining power of the precision DIS data. Towards higher x, the uncertainty grows

as the accuracy of the DY data is not enough to decisively nail down nuclear modification

for the sea quarks there. Note, however, that unlike in our earlier works, the parameter

ye was free. Towards small x the errors are perhaps surprisingly small given that there

are no direct data constraints. This is an artefact of the chosen form of the fit function

as the tight constraints at x ∼ 10−2 . . . 10−1 fix also the smaller-x behaviour leading to an

– 12 –

R=f
j/A

(x,Q²)/[Af
j/N

(x,Q²)]

JHEP04(2009)065
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NMC & EMC DIS
PHENIX 0 =0.0

BRAHMS h- =2.2
BRAHMS h- =3.2

2
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2 ]

Figure 2. The kinematical reach of the DIS, DY and pion production data (see table 1) corre-
sponding to the factorization scale choices explained in the text. The points indicate the lowest x
and Q2 values in which partons are sampled in the cross-section calculation. Also the BRAHMS
data [37] for negatively charged hadron production is shown as it will be discussed later in section 4.
The dashed horizontal line indicates the kinematical cut imposed on the data.

• Deep inelastic scattering

DIS data has an excellent constraining power for quark distributions in the whole

range 0.01 ≤ x ≤ 1 spanned by the data. At large x these data are mainly sensitive

to the valence quarks and at small x to the sea quarks. At moderate x, however,

close to the antishadowing peak near x = 0.1, such separation of the sea and valence

quark contributions is not possible on the basis of this type of data alone. Despite

the direct photon-gluon fusion channel contributing to the DIS cross-section at NLO,

the main gluon constraint provided by DIS still comes through the scale evolution of

sea quarks that is driven by the gluons.

• Drell-Yan dilepton production

The DY data, taken together with DIS, can discriminate between valence and sea

quarks near x = 0.1. The DY cross-section retains also some sensitivity to the sea

quarks at larger x but, unfortunately, the precision of the current data is not enough

to exploit this constraint in its full potential. The invariant mass M2 in our data

sample is typically large, M2 " Q2
0, and consequently there are sizable evolution

effects that constrain the gluons also.

• Inclusive pion production

This type of data is usually accompanied by a rather large normalization uncertainty

stemming, among other sources, from the model-dependent quantity 〈Ncoll〉. Apart

from the normalization uncertainty, the shape of Rπ
dAu can nevertheless act as a vital

constraint, especially for the nuclear modification for gluons. The slight downward

trend seen in the large-pT part of Rπ
dAu at midrapidity [28] indicates the need for a

– 7 –

 Однако, получаемые партонные распределения 
  имеют большую неопределенность, 
  особенно для глюонов в области малых х из-за:

- ограниченной кинематики
- непрямому извлечению глюонов через эволюцию 
- разных предположениях о форме распределений
- разного выбора данных JHEP04(2009)065
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Figure 10. Comparison of the average valence and sea quark, and gluon modifications at Q2 =
1.69 GeV2 and Q2 = 100 GeV2 for Pb nucleus from the NLO global DGLAP analyses HKN07 [5],
nDS [6] and this work, EPS09NLO.
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Figure 11. As figure 9 but also the prediction from HKN07 (NLO) is shown. The difference
between EPS09 and HKN07 here demonstrates the constraining power of these data in pinning
down the nuclear gluon PDFs in the mid-x and large-x regions.

3.4 Leading-order analysis

Although the NLO analysis is the main objective in the present paper, we have also per-

formed a new LO analysis to provide the tools for computing uncertainty estimates also in

this widely-used framework. The LO framework is basically the same as in NLO, but the

partonic cross-sections and DGLAP splitting functions are one power lower in αs, and we

kinematical reach.

– 18 –

Eskola, Puukkunen, Salgado, JHEP 04 (2009) 065 
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 Являются фундаментальными величинами для КХД описания жестких 
процессов с ядрами (DIS, pA и AA рассеяние).

 В частности, определяют начальные условия (ядерную волновую функцию) в 
столкновениях тяжелых ионов.

Партонные распределения в ядрах (2)  

 Требуются для количественной 
оценки наступления 
нелинейного режима 
насыщения:

Relevance for the HI program:

6

● Nuclear 
wave 
function at 
small x: 
nuclear 
structure 
functions.

● Particle production at 
the very beginning: which 
factorisation in eA?

● How does the system 
behave as ∼ isotropised 
so fast?: initial conditions 
for plasma formation to 
be studied in eA.

● Probing the 
medium through 
energetic particles 
(jet quenching 
etc.): modification 
of QCD radiation 
and hadronization 
in the nuclear 
medium.

4

Small x and saturation:

● QCD radiation of partons when x decreases leads to a large 
number of partons (gluons), provided each parton evolves 
independently (linearly, Δ[xg] ∝ xg).
● This independent evolution breaks at high densities (small x or 
high mass number A): non-linear effects (gg→g, Δ[xg] ∝ xg - k(xg)2).

xGA(x,Q2
s)

�R2
AQ2

s

� 1 =⇥ Q2
s ⇤ A1/3x⇥�0.3

11
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Теория экранировок лидирующего твистa
Mетод вычисления партонных (морские кварки и глюоны) распределений 
в ядрах при малых х как функция х и прицельного параметра b на некой 
начальной шкале Q0. Дальнейшая Q2 зависимость ―  согласно DGLAP.

 Метод основан на:

 Картине сильного взаимодействия при высоких энергиях в системе покоя 
мишени, формализме Грибова-Глаубера и его обобщения на случай еА 
глубоконеупругого рассеяния ➞  выражение для F2A(x,Q²) 
 
 Коллинеарной факторизации для полных и диффракционных сечений DIS ➞  
от F2A(x,Q²) к индивидуальным партонным распределениям fj/A(x,Q²)

 Дифранционныx партонныx плотностях в протоне (HERA) ➞ необходимая 
информация для численных предсказаний 

Терминология “лидирующий твист”: 
Экранировка выражaется через диффракцию ➞ дифракция явление 
лидируюшего твиста (HERA) ➞ теория описывает компоненту 
лидирующего твиста ядерных экранировок.
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Теория экранировок Глаубера 

• Применение метода Глаубера к рассеянию на ядре: 
- ядерный потенциал меняется медленно за  

         время взаимодействия ➞ нуклоны “заморожены”

Glauber approximation for scattering off nuclei

Why do we care about Glauber approximation? Because it give a clear geometrical
picture of nuclear shadowing in the rest frame of the nucleus.

Generalize proton Glauber formulas to the case of nucleus:
•incoming momentum is large, scattering angles are small
•the nuclear potential changes slowly during the interaction time,
i.e, nucleons can be considered to be frozen at their positions

Scattering amplitude on frozen nucleons (depends on coordinates of nucleons):

Integration over positions of the nucleons (using nuclear wave function):

A

k k’

- парные ядерные силы ➞ эйконалы складываются

Glauber approximation for scattering off nuclei (2)

When nuclear forces are pair-wise (normal situation):

Nuclear scattering amplitude (in impact parameter space) can be expressed in
terms of the elementary nucleon amplitudes.

After integration with the nuclear wave function squared:

S1

S2

b
k

Nuclear cross section as a series of A terms, where the expansion parameter is
the number of interactions (Glauber series).  

- aмплитуда рассеяния на ядре через элем. амплитуды:

- сечение на ядре (оптическая теорема):

импульсное 
приближение

ядерная экранировка за счет интерференции между 
1 и 2-х кратным взаимодействием 

14
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Теория экранировок Глаубера (2) 

• Mетод Глаубера объяснил полное пион-дейтронное сечение:
Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 265

Fig. 7. Graphs for pion–deuteron scattering in the Glauber approach.

2.3. Comparison of the Gribov and Glauber results for nuclear shadowing

Originally the nuclear shadowing correction to the pion–deuteron cross section was calculated by Glauber in 1955 [113]
for the energy range E⇡ ⇠ 1 GeV, where the Lorentz dilationwas not important. In the Glauber approach, the pion–deuteron
scattering amplitude receives contributions from the impulse approximation term and from the term corresponding to the
subsequent interactions of the pion with the two nucleons of the target; the both terms are presented in Fig. 7.

The corresponding expression for the total pion–deuteron cross section reads [113]:

�⇡Dtot = 2�⇡Ntot �
�
�⇡Ntot

�2

4⇡

⌧
1
r2

�

D
, (19)

where h1/r2iD is the average inverse radius squared of the deuteron,
⌧
1
r2

�

D
=

Z
d3Er | D(Er)|2 1

Er2 , (20)

with  D(Er) the deuteron wave function.
TheGribov formula for the nuclear shadowing correction (17) is the generalization of that of Glauber (19) to high energies.

Noticing that in Eq. (17), the |Ek|2 dependence of the deuteron form factor is much faster than that of the diffractive cross
section and assuming that only the elastic intermediate state contributes, Eq. (17) can be written as

�⇡Dtot ⇡ 2�⇡Ntot � d�⇡Nel (Ek)
dEk2

�����|Ek|2=0

2
Z

dEk2⇢
⇣
4Ek2

⌘
. (21)

Using the S-matrix unitarity condition,

d�⇡Nel (Ek)
dEk2

�����|Ek|2=0

=
�
�⇡Ntot

�2

16⇡
, (22)

and the expression for h1/r2iD in the momentum representation,
Z

dEk2⇢
⇣
4Ek2

⌘
= 2

⌧
1
r2

�

D
, (23)

one readily sees that the Gribov (21) and Glauber (19) formulas coincide, if the intermediate state is purely elastic. However,
when inelastic diffraction is important, the Gribov formula leads to larger shadowing.

Despite the similarity of the results obtainedwithin the Gribov andGlauber approaches, the two approaches are based on
very different pictures of high-energy hadron–nucleus scattering. The Glauber approach neglects the Lorentz time dilation
effects related to the hadron production. Indeed, themethod is essentially quantum-mechanical and the creation of particles
in the intermediate states is not possible. As a result, the incoming hadron is formed after each interaction and scatters
successively on the target nucleons, see Fig. 7.

More generally, in the p ! 1 limit, the shadowing correction in theGlauber approach (the right graph in Fig. 7) vanishes.
This can be proven by exact calculations in any quantum field theory which accounts for particle production. Using analytic
properties of the scattering amplitudewith respect to themass squared of the produced state, one can demonstrate the exact
cancellation of the diagrams with the eikonal topology [112,114] (the right graph in Fig. 7 is an example of such diagrams).
The physical reason for this cancellation is that during the finite time it takes for the partonic fluctuation to traverse the
nucleus, the fluctuation does not have enough time (which is of the order of lc / p) to form back into the projectile.

In the Gribov approach, the projectile interacts with the target as a superposition of different configurations that interact
with different strengths, but which evolve very little during the passage through the nucleus. These configurations emerge
behind the nucleus as a distorted – but still a coherent – superposition of configurations, which, when decomposed over

• Термин “экранировка”: разрушительная интерференция между 1 и 2-х 
кратным взаимодействием = нуклон на передней поверхности ядра 
заслоняет (экранирует) второй нуклон.

• Метод Глаубера работает с высокой точностью (погрешность несколько %) 
для адрон-ядерных сечений.

15



�⇡D
tot

= 2�⇡N
tot

� 2

Z
d~k2⇢

⇣
4~k2

⌘ d�⇡N
di↵

(~k)

d~k2

16

 Теория экранировок Грибова

• Амплитуда пион-дейтронного рассеяния вперед:

V. Gribov (1969)

deuteron form factor

shadowing correctionimpulse approximation

N
N

N

N

DDDD

ππ
ππ

Fig. 2. Graphs for pion-deuteron scattering.

Below we consider each graph in detail, assuming for simplicity that all involved particles
and the deuteron are spinless and the proton and the neutron are indistinguishable.

The contribution of the impulse approximation to the pion-deuteron scattering amplitude,
F imp
D (s, q), is

F imp
D (s, q)= i

∫ d4k

(2π)4
1

[(p12 + k)2 −m2 + iε][(p12 − k)2 −m2 + iε][(p12 + q + k)2 −m2 + iε]

×Γ

(

(

p1
2

− k
)2

,
(

p1
2

+ k
)2
)

Γ

(

(

p1
2

− k
)2

,
(

p1
2

+ q + k
)2
)

× fN

(

(

p+
p1
2

+ k
)2

, q2,
(p1
2

+ k
)2

,
(p1
2

+ q + k
)2
)

, (4)

where Γ is the D → NN vertex; fN is the pion-nucleon scattering amplitude; m is the
nucleon mass; q is the momentum transfer; p1 is the momentum of the initial deuteron.
The momentum flow used in Eq. (4) is depicted in Fig. 3.

+q

+k+q/21
p

-k

+k

1/2p

/21
p

11
pp

p-qp

Fig. 3. The momentum flow in the left graph in Fig. 2 and in Eq. (4).

In the deuteron rest frame, the inverse nucleon propagators in Eq. (4) are

13

• В теории поля, последовательныe взаимодействия (Глаубер) заменяются на 
когерентное взаимодействие с А нуклонами ядра через долгоживущие адронные 
флуктуации налетающей частицы (h, 𝛾, 𝛾*). 
Время жизни флуктуации = длина когерентности: 

Feinberg, Pomeranchuk (1956)
Gribov, Ioffe, Pomeranchuk (1965)
Good, Walker (1960)

lc / pbeam / 1/x

• Промежуточное состояние выражается через элементарную диффракцию
   ➞ теория Грибова-Глаубера:

• Ядерная экранировка выражается через элементарную дифракцию!

16
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Ядерная часть как в hA 

Обобщение на случай еА DIS
• Представление полного сечения в виде глауберовского ряда:

Author's personal copy
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Fig. 9. Graphs for to the total virtual photon–nucleus cross section, �� ⇤A . Graph a gives the impulse approximation; graphs b and c give the shadowing
correction arising from the interaction with two and three nucleons of the target, respectively.

When lc is larger than the diameter of the nucleus, 2RA, the virtual photon coherently (‘‘simultaneously’’) interactswith all
nucleons of the target located at the same impact parameter. For instance, for the nucleus of 40Ca, this happens for x  0.01.
On the other hand, when lc decreases and becomes compatible to the average distance between two nucleons in the nucleus,
rNN ⇡ 1.7 fm, all effects associated with large lc are expected to disappear. Therefore, the nuclear effects of shadowing and
antishadowing disappear for x > 0.2 (see also the discussion in Section 3.2 where this is discussed in the reference frame
of the fast moving nucleus).

The wave function of the projectile virtual photon is characterized by the distribution over components (fluctuations)
that widely differ in the strength of the interaction with the target: the fluctuations of a small transverse size correspond
to the small interaction strength and the large phase volume, while the fluctuations of a large transverse size correspond
to the large interaction strength but the small phase volume. A proper account of the interplay between the phase volume
of different configurations and their strength of interactions shows [122] that these components lead to the contributions
characterized by the same power of Q 2: �� ⇤T / 1/Q 2.1 Hence, at moderately small x, nuclear shadowing is a predominantly
non-perturbative QCD phenomenon complicated by the leading twist Q 2 evolution. At extremely small x, perturbative QCD
(pQCD) interactions become strong which leads to a change of the dynamics of nuclear shadowing, see the discussion in
Section 8.

At sufficiently high energies (small Bjorken x), when the virtual photon interacts with many nucleons of the target, the
lepton–nucleus scattering amplitude receives contributions from the graphs presented in Fig. 9. Considering the forward
scattering and taking the imaginary part of the graphs in Fig. 9 (presented by the vertical dashed lines), one obtains
the graphical representation for the total virtual photon–nucleus cross section, �� ⇤A. Note that there are other graphs,
corresponding to the interaction with four and more nucleons of the target, which are not shown in Fig. 9; the contribution
of these graphs to �� ⇤A is insignificant. However, they appear to be important in the case of the events with the multiplicity
significantly larger than the average.

Graph a in Fig. 9, which is a generalization of the left graph in Fig. 2 to the case of DIS, corresponds to the interaction with
one nucleon of the target (the impulse approximation). The contribution of graph a to �� ⇤A, which we denote �

(a)
� ⇤A, is

�
(a)
� ⇤A = A�� ⇤N , (31)

where �� ⇤N is the total virtual photon–nucleon cross section. The proton and neutron total cross sections (structure
functions) are very close at small x, and, therefore, unless specified, we shall not distinguish between protons and neutrons.
Also, in Eq. (31), we employed the non-relativistic approximation for the nucleus wave function. A more accurate treatment
would involve the light-cone many-nucleon approximation for the description of nuclei which leads to tiny corrections to
Eq. (31) for small x due to the Fermi motion effect, see Section 3.2. The good accuracy of this approximation has been tested
by numerous studies of elastic and total hadron–nucleus scattering cross sections at intermediate energies.

The total cross section in Eq. (31) corresponds to the sumof the cross sectionswith the transverse (�� ⇤
T N ) and longitudinal

(�� ⇤
L N ) polarizations of the virtual photon. These cross sections can be expressed in terms of the isospin-averaged inclusive

(unpolarized) structure function F2N(x,Q 2) and longitudinal structure function FL(x,Q 2), see, e.g. [101]:

�� ⇤
T N + �� ⇤

L N = �� ⇤N = 4⇡2↵em

Q 2(1 � x)
F2N(x,Q 2),

�� ⇤
L N = 4⇡2↵em

Q 2(1 � x)
FL(x,Q 2), (32)

1 This parton-model reasoning ismodified in QCDwhere the configurationswith almost on-mass-shell quarks are suppressed at largeQ 2 by the Sudakov
form factor. An account of radiation (Q 2 evolution) leads to the appearance of hard gluons (in addition to thenear on-mass-shell quarks) in thewave function
of the virtual photon. This property of QCD is important for the theoretical analysis of hard diffractive processes considered in Section 6.
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where ↵em is the fine-structure constant. The structure functions F2N(x,Q 2) and FL(x,Q 2) parameterize the unpolarized
lepton–hadron cross section, d2�/(dxdQ 2), using the standard expression [58]:

d2�
dxdQ 2 = 2⇡↵2

em

xQ 4

⇥�
1 + (1 � y)2

�
F2(x,Q 2) � y2FL(x,Q 2)

⇤
, (33)

where y = (p · q)/(p · k), p is the momentum of the hadron, k is the momentum of the initial lepton, and q is the momentum
of the exchanged virtual photon. Note that the contribution of FL(x,Q 2) to the cross section is generally significantly smaller
than that of F2(x,Q 2).

Using Eqs. (31) and (32), we obtain the following connection between the structure functions:

F (a)
2A (x,Q 2) = AF2N(x,Q 2), (34)

where F (a)
2A (x,Q 2) is the contribution of graph a in Fig. 9 (impulse approximation) to the nuclear structure function F2A(x,Q 2).

A similar relation is also valid for the longitudinal structure functions.
Graph b in Fig. 9 is the generalization of the right graph in Fig. 2 (see also Fig. 5) to the case of DIS off an arbitrary

nucleus. The intermediate state X denotes the diffractive final state of the � ⇤N ! XN reaction. Therefore, the answer for
the contribution of graph b to �� ⇤A, which we shall call � (b)

� ⇤A, should have the structure of the shadowing term in the Gribov
formula (17). The generalization to the case of the photon interaction with more than two nucleons will be considered in
Section 3.1.2.

The calculation of graph b in Fig. 9 is significantly simplified if one observes that the nuclear part of this interaction
(graph)weakly depends on energy and has the same structure as in the Glaubermultiple scattering formalism [113]. Indeed,
restricting the projectile–nucleon intermediate states by the diffractive ones and taking into account that at high energies
the interaction with the target nucleons depends only on the transverse part of the momentum transfer, the expression for
graph b in Fig. 9 should have the same form as that in themultiple scattering formalism, except for the additional effect of the
longitudinal momentum transfer to the nucleons which cuts off the contribution of large-mass intermediate states [the last
factor in Eq. (35) below]. The effects of Fermimotion and the dependence of the amplitudes of diffractive processes on energy
can be easily taken into accountwithin light-cone quantummechanics of nuclei; these effects lead to small corrections [123].

However, in contrast to the Glauber multiple scattering formalism, QCD predicts the existence of the contribution of the
diffractively produced inelastic states relevant for the color coherent phenomena and triple Pomeron diagrams. Besides
one needs to implement another QCD phenomenon, namely, energy–momentum conservation, which is impossible to
enforce within the eikonal approximation, see the discussion in Section 5.14. At sufficiently large energies, where the pQCD
interaction becomes strong (possibly, at the LHC), the nuclear part of graph b in Fig. 9will loose its universality and onewould
need to explore the approximation of the black disk limit in order to do the calculations in a model-independent way.

In summary, for the calculation of graph b in Fig. 9, at moderately small x, one can use the Glauber multiple scattering
formalism generalized to include inelastic diffractive intermediate states, i.e., coherent phenomena and energy–momentum
conservation. Expressing the scattering amplitude corresponding to graph b in Fig. 9 in the momentum representation and
performing the Fourier transform to the coordinate space, one obtains an operatorwhosematrix element between the initial
and final nuclear states integrated over the positions of nucleons gives the contribution to �� ⇤A that we seek [80,111,124]
(an account of the energy–momentum conservation will be discussed in Section 5):

�
(b)
� ⇤A = �2<e

Z
d2Eb

X

X

A(A � 1)
D
⇥(z2 � z1)�� ⇤X (Eb � Er1?)�X� ⇤(Eb � Er2?)ei(z1�z2)�� ⇤X

E
, (35)

where
P

X denotes the sum over all diffractive intermediate states (see Fig. 9); A(A � 1) is the number of the nucleon
pairs; (Eri?, zi) are the transverse and longitudinal (with respect to the direction of the momentum of � ⇤, Eq) coordinates of
the involved nucleons; ⇥(z2 � z1) is the step-function reflecting the underlying space–time evolution of the process; �� ⇤X
is the � ⇤N ! XN scattering amplitude in the space of the impact-parameter Eb; the brackets denote the matrix element
between the nuclear ground-states; �� ⇤X is the longitudinal momentum transfer, or, equivalently, the inverse coherence
length for the � ⇤ ! X fluctuation,

�� ⇤X = M2
X + Q 2

2|Eq| . (36)

For sufficiently heavy nuclei, the t dependence of the � ⇤N ! XN scattering amplitude is much slower than that of the
nuclear form factor and, hence, can be safely neglected. Therefore, �� ⇤X in Eq. (35) can be used in the following approximate
form, see e.g., [80,125]:

�� ⇤X (Eb � Er1?) = 1 � i⌘
2

s
16⇡

d�� ⇤N!XN
dt (tmin)

1 + ⌘2 �2(Eb � Er1?), (37)

where d�� ⇤N!XN/dt is the differential cross section of the � ⇤ + N ! X + N process; tmin ⇡ �x2m2
N(1 + M2

X/Q
2)2 is the

minimal momentum transfer defined by kinematics; ⌘ is the ratio of the real to the imaginary parts of the � ⇤N ! XN
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scattering amplitude. The normalization of �� ⇤X in Eq. (37) is fixed by the S-matrix unitarity condition for the hadronic
fluctuation X of the virtual photon,

d�XN!XN

dt
(tmin) = (1 + ⌘2)

� 2
XN!NX

16⇡
. (38)

Note that for DIS on deuterium and other light nuclei such as e.g., 3He and 4He, one cannot neglect the t dependence of the
elementary � ⇤N ! XN amplitude, see Section 4.

Unless specified, we consider sufficiently large nuclei, whose ground-state wave function squared can be approximated
by the product of independent, one-particle nuclear densities ⇢A,

| A(Er1, Er2, . . . , ErA)|2 =
AY

i=1

⇢A(Eri). (39)

The nuclear density ⇢A is normalized to unity,
R
d3r⇢A(Er) = 1. The approximation of independent nucleons is used only

for simplification: nucleon–nucleon correlations can be straightforwardly introduced and this will not noticeably change
our results. For instance, corrections due to short-range correlations between nucleons is a few percent effect for the total
hadron–nucleus cross sections [126]. For the case of the deuteron target, we use directly the deuteron wave function, see
details in Section 4.

Substituting Eq. (37) in Eq. (35) and integrating over the nucleon coordinates using Eq. (39), we obtain:

�
(b)
� ⇤A = �8⇡A(A � 1)<e

Z
d2Eb

X

X

(1 � i⌘)2

1 + ⌘2

⇥ d�� ⇤N!XN

dt
(tmin)

Z 1

�1
dz1

Z 1

z1
dz2 ⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)�� ⇤X . (40)

The d�� ⇤N!XN/dt differential cross section can be expressed in terms of the diffractive structure functions FD(4)
2 and FD(4)

L
(compare to Eq. (32)) which parameterize the cross section of inclusive diffraction ep ! e + p + X (compare to Eq. (33)):

d4� D
ep

dxP dt dx dQ 2 = 2⇡↵2
em

xQ 4

h�
1 + (1 � y)2

�
FD(4)
2 (x,Q 2, xP, t) � y2FD(4)

L (x,Q 2, xP, t)
i
. (41)

The diffractive structure functions depend on the virtuality Q 2, Bjorken x, the invariant momentum transfer t , and the light-
cone fraction xP,

xP = M2
X + Q 2

W 2 + Q 2 , (42)

whereW 2 = (q+p)2. For amini-reviewof hard diffraction in lepton–nucleonDIS,we refer the reader to Sections 3.5 and 3.6.
Using the connection between the total and diffractive cross sections and the corresponding structure functions (Eqs.

(32), (33) and (41)) and replacing the sum over the diffractive states X in Eq. (40) by the integration over xP, we obtain
our final expression for the contribution of graph b in Fig. 9 to the nuclear structure function F2A(x,Q 2), which we denote
F (b)
2A (x,Q 2):

F (b)
2A (x,Q 2) = �8⇡A(A � 1)<e

(1 � i⌘)2

1 + ⌘2

Z 0.1

x
dxPF

D(4)
2 (x,Q 2, xP, tmin)

⇥
Z

d2Eb
Z 1

�1
dz1

Z 1

z1
dz2 ⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)xPmN . (43)

The lower limit of integration over xP corresponds to MX = 0 (see Eq. (42)); the upper limit of integration is defined by the
typical cut on the diffractively produced masses M2

X  0.1W 2. The contribution of large diffractive masses, M2
X & 0.1W 2,

is automatically suppressed by the ei(z1�z2)xPmN factor in the above integrand. A similar expression is also valid for the
longitudinal structure functions:

FA(b)
L (x,Q 2) = �8⇡A(A � 1)<e

(1 � i⌘)2

1 + ⌘2

Z 0.1

x
dxPF

D(4)
L (x,Q 2, xP, tmin)

⇥
Z

d2Eb
Z 1

�1
dz1

Z 1

z1
dz2 ⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)xPmN . (44)

It is important to point out that Eqs. (43) and (44) give the complete and model-independent answer for the shadowing
correction for the interaction with two nucleons of the target, which is the case in the low nuclear density limit and

Дифракционная структурная функция 

троекратное взаимодействие 
требует моделирования

17



18

 

Обобщение на случай еА DIS (2)
• Факторизационная теорема для полного и диффракционного сечения:

троекратное взаимодействие 
требует моделирования

the subscripts p and n refer to the free proton and neutron, respectively.
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the
interaction with one, two, and three nucleons, respectively. Graph a gives the impulse approxi-
mation; graphs b and c contribute to the shadowing correction.
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Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states
that, at given fixed t and xIP and in the LT approximation, the diffractive structure
function FD(4)

2 can be written as the convolution of the same hard scattering coefficient
functions Cj with universal diffractive parton distributions fD(4)

j :

FD(4)
2 (x,Q2, xIP , t) = β

∑

j=q,q̄,g

1
∫

β

dy

y
Cj(

β

y
,Q2)fD(4)

j (y,Q2, xIP , t) , (47)

where β = x/xIP . The diffractive PDFs fD(4)
j are conditional probabilities to find a parton
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the interaction with one, two, and three nucleons, respectively.
Graph a gives the impulse approximation; graphs b and c contribute to the shadowing correction.

Fig. 11. Graphs corresponding to the gluon nuclear PDF. For the legend, see Fig. 10.

in the case of the deuteron target. One should also note that Eqs. (43) and (44) do not require the decomposition over
twists. The only requirement is that the nucleus is a system of color neutral objects—nucleons. The data on the EMC ratio
F2A(x,Q 2)/[AF2N(x,Q 2)] for x > 0.1 indicate that the corrections to the multinucleon picture of the nucleus do not exceed
few percent for x  0.5, see the discussion in Section 3.2.

The next crucial step in the derivation of ourmaster equation for nuclear PDFs is the use of theQCD factorization theorems
for inclusive DIS and hard diffraction in DIS. According to the QCD factorization theorem for inclusive DIS (for a review, see,
e.g., [58]) the inclusive structure function F2(x,Q 2) (of any target) is given by the convolution of hard scattering coefficients
Cj with the parton distribution functions of the target fj (j is the parton flavor):

F2(x,Q 2) = x
X

j=q,q̄,g

Z 1

x

dy
y
Cj

✓
x
y
,Q 2

◆
fj(y,Q 2). (45)

Since the coefficient functions Cj do not depend on the target, Eq. (34) leads to the relation between nuclear PDFs of flavor
j, which are evaluated in the impulse approximation, f (a)

j/A , and the nucleon PDFs fj/N ,

xf (a)
j/A (x,Q 2) = Axfj/N(x,Q 2). (46)

In the graphical form, f (a)
j/A is given by graph a in Figs. 10 and 11.

Note also that one can take into account the difference between the proton and neutron PDFs by replacing Afj/N !
Zfj/p + (A � Z)fj/n, where Z is the number of protons, and the subscripts p and n refer to the free proton and neutron,
respectively.

Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states that, at given fixed t and xP

and in the leading twist (LT) approximation, the diffractive structure function FD(4)
2 can be written as the convolution of the

same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)
j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (47)
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where � = x/xP. The diffractive PDFs f D(4)
j are conditional probabilities to find a parton of flavor jwith a light-cone fraction

� in the proton that undergoes diffractive scattering characterized by the longitudinal momentum fraction xP and the
momentum transfer t , see Sections 3.5 and 3.6 for details.

Since the inclusive and diffractive structure functions in Eq. (43) are given by the convolution of the corresponding PDFs
with the same hard scattering coefficients Cj, Eq. (43) can be turned into the relation between nuclear PDFs, f (b)

j/A , and the
diffractive PDFs of the nucleon, f D(4)

j :

xf (b)
j/A (x,Q 2) = �8⇡A(A � 1)<e

(1 � i⌘)2

1 + ⌘2

Z 0.1

x
dxP�f D(4)

j (�,Q 2, xP, tmin)

⇥
Z

d2Eb
Z 1

�1
dz1

Z 1

z1
dz2 ⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)xPmN . (48)

In the graphical form, f (b)
j/A is given by graph b in Figs. 10 and 11 (the superscript (b) indicates that we took into account

only the contribution of graph b in Figs. 9–11). Again, similarly to the case of Eq. (43), it is important to note that Eq. (48)
gives the complete answer for the shadowing correction to nuclear PDFs when the interactionwith only two nucleons of the
target is important (see the discussion above). Since according to the factorization theorem diffractive PDFs have the same
anomalous dimensions as the usual PDFs, the left-hand and right-hand sides of Eq. (48) satisfy the same evolution equations
at any order in the strong coupling constant↵s. We also simplified the expression in Eq. (48) by pulling (1� i⌘)2/(1+⌘2) out
of the integral over xP. This can be done because, experimentally, ⌘ is practically xP-independent and the (1� i⌘)2/(1+ ⌘2)
factor itself is rather close to unity. This follows from the Gribov–Migdal formula which was derived within the Pomeron
exchange framework [127]:

⌘ ⌘ <eA� ⇤N!XN

=mA� ⇤N!XN
= ⇡

2
@ ln=mA� ⇤N!XN

@ ln(1/x)
⇡ ⇡

2
(↵P(0) � 1) = 0.174, (49)

where in the last step we used the relation between the energy dependence of the imaginary part of the diffractive
amplitude =mA� ⇤N!XN and the intercept of the Pomeron trajectory, ↵P(0), for which we used the phenomenological value
↵P(0) = 1.111, see the detailed discussion in Sections 3.6 and 5.

The derivation of the expressions for f (a)
j/A and f (b)

j/A is general and model-independent: we only made a simplifying
approximation neglecting nucleon correlations in the nuclear wave function and a small correction associated with the
t dependence of the elementary diffractive � ⇤N ! XN amplitude. (For the deuteron target, the latter two approximations
are not used, see Section 4.) By the virtue of the factorization theorem the derived results do not depend on the specific
current used to probe nuclear PDFs and are valid for any kind of current: transversely and longitudinally polarized virtual
photons � ⇤

T and � ⇤
L , respectively, gauge boson Z0, or any leading twist operator that couples directly to gluons.

3.1.2. Contribution to nuclear shadowing of the interactionswithN � 3 nucleons of the target: the cross section (color) fluctuation
formalism

We derived the model-independent expressions for the interaction of the virtual photon with one and two nucleons of
the nuclear target and expressed them in terms of measurable quantities, see Eqs. (46) and (48). To generalize the above
results to the interaction with three andmore nucleons of the target, graph c in Figs. 10 and 11, requires invoking additional
ideas. (The A-dependence of the contributions of the interaction with a given number of nucleons can still be calculated in
a model-independent way.) Belowwe explain the problem and how to resolve it. We suggest an approximation for treating
the interactions with N > 2 nucleons that circumvents the problem, takes into account main features of the diffractive
dynamics and enables us to express the shadowing correction in terms of the parton distributions.

The problem of nuclear shadowing in DIS can be reformulated as the problem of propagation of QCD color singlet
states in a nuclear medium. While at each step of our calculations we are dealing with colorless objects, the strength of
the interactions of the virtual photon with the nucleons and, in particular, the presence of point-like configurations, is an
unambiguous consequence of the QCD color dynamics. The QCD factorization theorem for diffraction in DIS is also valid for
the interactions with N = 3 nucleons (graph c of Figs. 10 and 11) and N > 3 nucleons. Hence, one can easily derive the
general expression for the nuclear shadowing correction for a heavy nucleus. However, this expression is not calculable in
terms of DIS diffraction off a nucleon since the configurations in the photon wave function, which lead to diffractive final
states and those which do not, enter in a different proportion in the interactions with N = 2 and N � 3 nucleons. Therefore,
we have to elaborate further our approach.

In order to take into account the sum over diffractively produced states in DIS, we use the formalism of cross section
fluctuations [104,115,128,129]. In this formalism, the wave function of a fast projectile (virtual photon) is represented as a
superposition of the eigenstates of the scattering operator, |� i. Each eigenstate interactswith a target nucleonwith a certain
cross section � . The usefulness of such a decomposition follows from the well understood property of QCD that the wave
function of a virtual photon (hadron) is a superposition of quark–gluon configurations of different transverse sizes whose
interaction is proportional the transverse area occupied by color, see, e.g., [130]. The existence and important role of small
transverse size configurations in thewave functions of photons and pions has been confirmed by the observation of the color
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Обобщение на случай еА DIS (3)
• 1 и 2-х кратное взаимодействие модельно независимо, но троекратное 
взаимодействие требует дополнительного моделирования.

• Именно в этом месте начинаются отличия между разными группами:
  (Frankfurt, Guzey, Strikman vs. Kaidalov et al. vs. дипольные модели)

• Используем квази-эйкональное приближение:
- взаимодействие с N ≥ 3 нуклонами описывается одним эффект. сечением
-  αP(0)=1.11 указывает, что дифранция на HERA определяется мягкой физикой
- доминируют флуктуации большого размера (как в пионе)
- предлагаем 2 модели для эффективного сеченияAuthor's personal copy
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Fig. 29. The cross sections �
j(H)
soft , �

j(L)
soft , and �

j
2(x,Q

2
0 ) as functions of Bjorken x at fixed Q 2

0 = 4 GeV2. The left panel corresponds to the ū-quark; the right
panel corresponds to gluons.

Fig. 30. The ratio R of Eq. (116) at Q 2
0 = 4 GeV2. The solid curves correspond to �max = 0.5; the dotted curves correspond to �max = 0.1; the dot-dashed

curves correspond to �max = 0.01; the short-dashed curves correspond to �max = 0.001.

To quantify the contributions of different regions of integration over � to �
j
2(x,Q

2), we introduce the ratio R defined as
follows:

R(�max, x) ⌘
R 0.1
x dxP�f D(3)

j/N (�,Q 2
0 , xP)⇥(�max � �)

R 0.1
x dxP�f D(3)

j/N (�,Q 2
0 , xP)

. (116)

The ratio R for the ū-quark and gluon channels at Q 2
0 = 4 GeV2 is presented in Fig. 30. In the figure, the solid curves

correspond to �max = 0.5; the dotted curves correspond to �max = 0.1; the dot-dashed curves correspond to �max = 0.01;
the short-dashed curves correspond to �max = 0.001.

One can infer from Fig. 30 the relative contributions of different �-regions to �
j
2(x,Q

2) and, hence, to nuclear shadowing.
For instance, for x  10�5, the �  0.001-region contributes to nuclear shadowing at most 9% in the quark channel and
16% in the gluon channel. This estimate suggests that even for such small values of Bjorken x, various small-x effects, which
are not included in the DGLAP picture, should not lead to significant corrections in the evaluation of nuclear PDFs.

Another conclusion is that the diffractively produced masses M2
X ⇡ Q 2(1 � �)/� can be large. At very high energies

(small x), one enters the regime analogous to the triple Pomeron limit of hadronic physics, which allows for � ⌧ 1. This
contribution (neglecting the large-� contribution) to the nuclear structure functions at extremely small x was evaluated in
the Color Glass Condensate framework, see, e.g., Ref. [171].

5.1.4. Nuclear antishadowing and DGLAP evolution
By construction, Eq. (64) does not describe nuclear modifications of PDFs for x > 0.1, where such effects as nuclear

antishadowing and the EMC effect take place. However, we need to know nuclear PDFs at our chosen input scale Q 2
0 =

4 GeV2 for a wide range of the values of Bjorken x0, x  x0  1, since we use those nPDFs as an input for the
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution to higher Q 2 > Q 2

0 .
The DGLAP evolution equations for PDFs fj of any target (we use the nucleus) read [77]:

d f nsj/A(x,Q
2)

d logQ 2 = ↵s(Q 2)

2⇡

Z 1

x

dx0

x0 Pqq
⇣ x
x0

⌘
f nsj/A(x

0,Q 2),

d
d logQ 2

✓
f sA(x,Q

2)

fg/A(x,Q 2)

◆
= ↵s(Q 2)

2⇡

Z 1

x

dx0

x0

0

B@
Pqq

⇣ x
x0

⌘
Pqg

⇣ x
x0

⌘

Pqg
⇣ x
x0

⌘
Pgg

⇣ x
x0

⌘

1

CA
✓

f sA(x
0,Q 2)

fg/A(x0,Q 2)

◆
, (117)
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the interaction with one, two, and three nucleons, respectively.
Graph a gives the impulse approximation; graphs b and c contribute to the shadowing correction.

Fig. 11. Graphs corresponding to the gluon nuclear PDF. For the legend, see Fig. 10.

in the case of the deuteron target. One should also note that Eqs. (43) and (44) do not require the decomposition over
twists. The only requirement is that the nucleus is a system of color neutral objects—nucleons. The data on the EMC ratio
F2A(x,Q 2)/[AF2N(x,Q 2)] for x > 0.1 indicate that the corrections to the multinucleon picture of the nucleus do not exceed
few percent for x  0.5, see the discussion in Section 3.2.

The next crucial step in the derivation of ourmaster equation for nuclear PDFs is the use of theQCD factorization theorems
for inclusive DIS and hard diffraction in DIS. According to the QCD factorization theorem for inclusive DIS (for a review, see,
e.g., [58]) the inclusive structure function F2(x,Q 2) (of any target) is given by the convolution of hard scattering coefficients
Cj with the parton distribution functions of the target fj (j is the parton flavor):

F2(x,Q 2) = x
X

j=q,q̄,g

Z 1

x

dy
y
Cj

✓
x
y
,Q 2

◆
fj(y,Q 2). (45)

Since the coefficient functions Cj do not depend on the target, Eq. (34) leads to the relation between nuclear PDFs of flavor
j, which are evaluated in the impulse approximation, f (a)

j/A , and the nucleon PDFs fj/N ,

xf (a)
j/A (x,Q 2) = Axfj/N(x,Q 2). (46)

In the graphical form, f (a)
j/A is given by graph a in Figs. 10 and 11.

Note also that one can take into account the difference between the proton and neutron PDFs by replacing Afj/N !
Zfj/p + (A � Z)fj/n, where Z is the number of protons, and the subscripts p and n refer to the free proton and neutron,
respectively.

Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states that, at given fixed t and xP

and in the leading twist (LT) approximation, the diffractive structure function FD(4)
2 can be written as the convolution of the

same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)
j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (47)
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Обобщение на случай еА DIS (4)
• Окончательное выражение для ядерной партонной плотности в области 
экранировок (x < 0.1):the subscripts p and n refer to the free proton and neutron, respectively.
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Fig. 10. Graphs corresponding to sea quark nuclear PDFs. Graphs a, b, and c correspond to the
interaction with one, two, and three nucleons, respectively. Graph a gives the impulse approxi-
mation; graphs b and c contribute to the shadowing correction.
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Similarly to the inclusive case, the factorization theorem for hard diffraction in DIS states
that, at given fixed t and xIP and in the LT approximation, the diffractive structure
function FD(4)

2 can be written as the convolution of the same hard scattering coefficient
functions Cj with universal diffractive parton distributions fD(4)

j :

FD(4)
2 (x,Q2, xIP , t) = β

∑

j=q,q̄,g

1
∫

β

dy

y
Cj(

β

y
,Q2)fD(4)

j (y,Q2, xIP , t) , (47)

where β = x/xIP . The diffractive PDFs fD(4)
j are conditional probabilities to find a parton
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our numerical studies described below, � decreases with decreasing x, which reflects the onset of the strong interaction
regime for the increasing fraction of the configurations contributing to the PDFs.

We shall postpone the detailed discussion of � j
soft until Section 5.1.2. At this point, to get the feeling about the meaning

and magnitude of �
j
soft, we note that if diffraction were described by the aligned jet model, we would expect the typical

strength of the interaction of a large-size qq̄ configuration with the nucleon to be compatible to that for pions (⇢ mesons,
etc.), i.e., �aligned jet�N ⇡ 25 mb at x = 0.01 and �aligned jet�N ⇡ 40 mb at x = 10�5.

Applying the color fluctuation approximation to Eq. (61), we obtain our final expression for the nuclear parton distribu-
tion modified by nuclear shadowing,

xfj/A(x,Q 2
0 ) = Axfj/N(x,Q 2

0 ) � 8⇡A(A � 1) <e
(1 � i⌘)2

1 + ⌘2 Bdiff

Z 0.1

x
dxP�f D(3)

j (�,Q 2
0 , xP)

⇥
Z

d2b
Z 1

�1
dz1

Z 1

z1
dz2⇢A(Eb, z1)⇢A(Eb, z2)ei(z1�z2)xPmN e� A

2 (1�i⌘)�
j
soft(x,Q

2
0 )

R z2
z1 dz0⇢A(Eb,z0), (64)

where Afj/N ⌘ Zfj/p + (A � Z)fj/n; Q 2
0 is a low scale at which the color fluctuation approximation is applicable (see below).

The nuclear PDFs fj/A given by Eq. (64) are next-to-leading (NLO) PDFs since the nucleon diffractive PDFs f D(3)
j are obtained

from the NLO QCD fit.
Our master Eq. (64) determines the nuclear PDFs fj/A at a particular input scale Q 2 = Q 2

0 , which is explicitly present in
fj/N , f

D(3)
j and �

j
soft. The color fluctuation approximation is more accurate if the fluctuations are more hadron-like, i.e., when

the contribution of the point-like configurations (PLCs) is small. This demands that Q 2
0 is not too large. At the same time, we

would like to stay within the perturbative regime, where higher twist contributions to the diffractive structure functions
are still small and where the fits to diffractive PDFs do not have to be extrapolated too strongly. (In the extraction of the
diffractive PDFs from the HERA data on diffraction, only the data with Q 2 > 8.5 GeV2 were used [61]. However, it has been
checked that the extrapolation down to Q 2 = 4 GeV2 works with a good accuracy.) Accordingly, in our numerical analysis,
we use Q 2

0 = 4 GeV2. We will demonstrate that our results depend weakly on the choice of Q 2
0 , even if we keep �

j
soft fixed.

This is because the approximations discussed above are needed only for the interactions with three and more nucleons of
the target; the double rescattering contribution is evaluated in a model-independent way.

It is important to emphasize that while Eq. (61) gives a general expression for the effect of cross section (color)
fluctuations on themultiple interactions, Eq. (64) presents a particular approximation—the color fluctuation approximation.
In this approximation, the interaction cross section with N � 3 nucleons is �

j
soft(x,Q

2) = h� 3ij/h� 2ij, see Eq. (63). Eq. (64)
allows for a simple interpretation: the factor Bdiff

R 0.1
x dxP�f D(3)

j (�,Q 2, xP) describes the probability for a photon to diffract
into diffractive states in the interaction with a target nucleon at point (z1, Eb) and to be absorbed in the interaction with
another nucleon at point (z2, Eb), while the factor in the third line of Eq. (64) describes the interaction of the diffractive states
with other nucleons of the nucleus with the cross section �

j
soft between points z1 and z2.

It is important to note that �
j
soft(x,Q

2) can be determined experimentally by measuring nuclear shadowing with a light
nucleus, for instance, with 4He. Alternatively, �

j
soft(x,Q

2) can be extracted directly from coherent diffraction in DIS on
deuterium [128]. After �

j
soft(x,Q

2) will have been determined, the leading twist theory will contain no model-dependent
parameters and can be used to predict nuclear shadowing for an arbitrary nucleus in a completely model-independent way.
The discussed measurements can be carried out at a future Electron–Ion Collider.

In the treatment of multiple rescatterings in the leading twist theory of nuclear shadowing in Ref. [76], we used the
so-called quasi-eikonal approximation, which neglects color fluctuations and, hence, uses �

j
soft(x,Q

2) = �
j
2(x,Q

2) ⌘
h� 2ij/h� ij in Eq. (64). Such an approximation gives the results identical to Eq. (64) for the interaction with one and two
nucleons of the nuclear target. However, it neglects the presence of point-like configurations in the virtual photon wave
function and, hence, overestimates shadowing at x ⇠ 10�3, where the contribution of the interactionswithN > 2 is already
important, while the contribution of the point-like configurations is still significant. We will use a comparison between
the color fluctuation and quasi-eikonal approximations to illustrate the role of color fluctuations in Section 5.8. (Note that
the quasi-eikonal approximation is popular in the literature in spite of its deep shortcomings discussed above and also in
Section 3.1.4.)

In the very small-x limit, which for practical purposes means x < 10�2 (see Fig. 44), the factor ei(z1�z2)xPmN in Eq. (64) can
be safely neglected. This results in a significant simplification of the master formula after the integration by parts two times
(cf. [80]):

xfj/A(x,Q 2
0 ) = A xfj/N(x,Q 2

0 ) � 8⇡A(A � 1)Bdiff <e
(1 � i⌘)2

1 + ⌘2

Z 0.1

x
dxP�f D(3)

j (�,Q 2
0 , xP)

⇥
Z

d2Eb e�LTA(b) � 1 + LTA(b)
L2

, (65)

where L = A/2 (1 � i⌘)�
j
soft(x,Q

2
0 ); TA(b) = R 1

�1 dz ⇢A(z).
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Дифракция в ep DIS на HERA

depend on x.

3.5.2 Diffractive structure functions and diffractive PDFs

Most of the HERA experimental studies were performed at small x. In this case, one
often uses the variable xIP = 1− z. The cross section for the process ep → e+ p+X (or
production of any other hadron), see Fig. 17, is usually parameterized in the following
form:

d4σD
ep

dxIP dt dx dQ2
=

2πα2

xQ4

[(

1 + (1− y)2
)

FD(4)
2 (x,Q2, xIP , t)− y2FD(4)

L (x,Q2, xIP , t)
]

,(83)

where Q2 is the virtuality of the exchanged photon; x = Q2/(2p·q) is the Bjorken variable;
y = (p · q)/(p · k) is the fractional energy loss of the incoming lepton. We follow here the
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Fig. 17. Diffractive production of a hadron with momentum p′ in the nucleon fragmentation
region in DIS.

notations commonly used for the description of phenomena in the small x kinematics; in
order to emphasize the role of small xIP processes, one introduces the superscript ”D”
denoting FD(4)

2 and FD(4)
L as the diffractive structure functions (the superscript ”(4)”

denotes that the structure functions depend on four variables). (Note that in the case of
generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xIP and t are expressed through the experimentally measured quantities:

t= (p′ − p)2 ,

xIP =
q · (p− p′)

q · p
≈

M2
X +Q2

W 2 +Q2
,

β=
Q2

2q · (p− p′)
=

x

xIP
≈

Q2

Q2 +M2
X

, (84)
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• Коллинеарная факторизация (Collins ’97) ➞ дифракционные партонные плотности

• Измерение наклона t зависимости диффр. сечения: Bdiff = 6 GeV-2 ± 15%  
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twist theory of nuclear shadowing predicts for x = 10�4 and b = 0 that gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.33 (FGS10_H)
and gA(x, b,Q 2)/[ATA(b)gN(x,Q 2)] = 0.51 (FGS10_L), see Fig. 41.

The discussed results give another illustration of the observation that realistic nuclei can be treated as rather dilute
systems in the processes involving nuclear shadowing with large fluctuations of the number of involved nucleons, even at
small impact parameters.

3.5. Diffraction in DIS and the QCD factorization theorem

3.5.1. Nucleon fragmentation in DIS
In DIS a struck parton is removed from the nucleon and moves with a large momentum relative to the spectator system.

The struck parton and spectator system fragment into separate groups of hadrons. (Hadrons at the central rapidities may
belong to either of the groups.) It is convenient to consider the process in the Breit frame where the nucleon momentum
P ! 1 and the photon momentum is aligned along the same axis: Eq = �2xEP and qµ = 0 for all other components. In
the parton model approximation, the final quark flies with the momentum �xP in the opposite direction with respect to
the residual system that carries the momentum (1 � x)P . As a result, a hadron in the target fragmentation region can be
produced with the maximal light-cone fraction z relative to the incident nucleon: z  (1� x). For large x � 0.1, the process
corresponds to the removal of the valence quark from the nucleon and creation of a color flow between the current and
target fragmentation regions. As a result, for such x, the distribution in the variable xF = z/(1 � x) should go to zero at the
kinematic limit xF ! 1 [123,139]. (This kinematic limit follows from the requirement that theminus component of the four
momentum of the system X should be positive. The actual dependence on xF follows from details of the QCD dynamics and
is often parameterized in terms of quark counting rules.) With a decrease of x, the dynamics changes; hence, the shape of
the distribution z(xF ) should depend on x.

3.5.2. Diffractive structure functions and diffractive PDFs
Most of the HERA experimental studies were performed at small x. In this case, one often uses the variable xP = 1 � z.

The cross section for the process ep ! e + p + X (or production of any other hadron), see Fig. 17, is usually parameterized
in the following form:

d4� D
ep

dxP dt dx dQ 2 = 2⇡↵2

xQ 4

h�
1 + (1 � y)2

�
FD(4)
2 (x,Q 2, xP, t) � y2FD(4)

L (x,Q 2, xP, t)
i
, (83)

whereQ 2 is the virtuality of the exchanged photon; x = Q 2/(2p ·q) is the Bjorken variable; y = (p ·q)/(p ·k) is the fractional
energy loss of the incoming lepton. We follow here the notations commonly used for the description of phenomena in the
small x kinematics; in order to emphasize the role of small xP processes, one introduces the superscript ‘‘D’’ denoting FD(4)

2
and FD(4)

L as the diffractive structure functions (the superscript ‘‘(4)’’ denotes that the structure functions depend on four
variables). (Note that in the case of generic x and z, these quantities are often referred to as fracture functions [148].) The
variables xP and t are expressed through the experimentally measured quantities:

t = (p0 � p)2,

xP = q · (p � p0)
q · p ⇡ M2

X + Q 2

W 2 + Q 2 ,

� = Q 2

2q · (p � p0)
= x

xP
⇡ Q 2

Q 2 + M2
X
, (84)

whereMX is the invariant mass of the produced final state;W 2 is the invariant mass squared of the � ⇤p system (see Fig. 17).
The variable xP describes the fractional loss of the proton longitudinal momentum; we also defined here � which is the
longitudinal momentum fraction with respect to xP carried by the interacting parton (to the leading order in ↵s). Note that
the contribution of the termproportional to FD(4)

L in Eq. (83) is kinematically suppressed and usually neglected in the analysis
of diffraction.

In pQCD a partonwith a virtualityQ 2
0 is resolved at higherQ 2 leading to the scaling violations. If a parton at the resolution

scale (x,Q 2) is removed, the final state in the fragmentation region will be changed as compared to the removal of a parent
parton at the scale (x0,Q 2

0 ). The difference is due to the emission of partons in the evolution process and fragmentation of the
struck quark. However, partons produced in the hard process of the evolution from scale Q0 to scale Q have the transverse
momenta�Q0 and, hence, their overlapping integral with a low pt and finite z hadron is suppressed by a power of Q 2

0 [121].
The quark–gluon system produced in the hard interaction is well localized in the transverse directions and, hence, should
interactwith the target in the sameway as the parton at (x0,Q 2

0 ). As a result, theQ 2 evolution of the fragmentation functions
for fixed t and z is given by the same DGLAP equations as those for the nucleon PDFs [59,121]. This result follows from the
fact that QCD evolution occurs in both cases off a single parton. The kinematical window appropriate for the onset of the
applicability of the QCD factorization theorem depends on the interplay between z and x: (i) the selection of smaller x
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Fig. 17. Diffractive production of a hadron with momentum p0 in the nucleon fragmentation region in DIS.

increases the contribution of higher-twist effects, and (ii) the products of the hard parton fragmentation tend to fill the
rapidity gap between the photon and target fragmentation regions, especially in the case when this parton carries a small
fraction z of the photon momentum. Thus, larger Q0 is necessary to suppress the both effects.

Similarly to the inclusive case, the factorization theorem for diffraction (production of a hadron with fixed z and t) in DIS
states that, at given fixed t and xP and in the leading twist approximation, the diffractive structure function FD(4)

2 is given by
the convolution of the same hard scattering coefficient functions Cj with universal diffractive parton distributions f D(4)

j :

FD(4)
2 (x,Q 2, xP, t) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(4)
j (y,Q 2, xP, t), (85)

where � = x/xP. The diffractive PDFs f D(4)
j are conditional probabilities to find a parton of flavor jwith a light-cone fraction

� in the proton that undergoes diffractive scattering characterized by the longitudinal momentum fraction xP and the
momentum transfer t , see Sections 3.5 and 3.6 for details.

3.5.3. Diffractive dynamics in DIS
DIS at finite x creates a color flow between the current and target fragmentation regions leading to a strong break-up of

the nucleon since a typical nucleon carries a relatively small light-cone fraction of the initial nucleonmomentum (remember
that z > 1 � x is kinematically forbidden in this case). Hence, the HERA observation of the significant diffraction in DIS at
small x came as a surprise to the theorists not used to the small x dynamics since pQCD and the confinement of color do not
allow rapidity gaps.

The key to resolving this puzzle has been provided long time ago by the aligned jet model (AJM) [122]. The model was
proposed to address the Gribov paradox consisting in the observation that if all configurations in the virtual photon wave
function interacted with large hadronic strengths with nuclei, the Bjorken scaling would be grossly violated at small x.
Bjorken has demonstrated that if one follows the spirit of the parton model and allows only the interactions of the partons
with small kt , the scaling is restored. The dominant configurations in the photon wave function are the qq̄ pairs with the
invariant masses of the order of Q 2 and transverse momenta ksoft. In the rest frame of the target, the partons carry the
momenta p1 ⇠ q0 and p2 = k2soft/(2xmN). In coordinate space, the process proceeds as follows: � ⇤ transforms into a qq̄ pair
with the momenta ±ksoft at a large distance 1/(2mNx) from the target. After covering this distance to the target, the qq̄ pair
has the transverse separation which is of the order of 1/ksoft and the system can interact with the typical hadronic strength.

In QCD one needs to modify the AJM to account for two effects [81]. One is the Sudakov form factor: � ⇤ cannot transform
into a qq̄ pair with small kt without gluon radiation. This effect is taken into account by the pQCD evolution (change of
x of the parton). It does not change the transverse size of the system and, as a result, the system interacts with the same
strength at largeQ 2. The secondmodification is the presence of large kt configurations that have small transverse sizes. Their
interaction is suppressed by the factor↵s(kt)2/k2t —the color transparency effect. However, due to a large phase volume, these
configurations give a contribution comparable to that of the AJM. (The estimate of [81,82] suggested that the AJM contributes
about 70% to F2p(x ⇠ 10�2,Q 2

0 ⇠ 2–3 GeV2).)
While diffraction for the AJM configurations is expected to be comparable to that of hadrons, it is strongly suppressed for

small size configurations for moderate x > 10�3 since the strength of the interaction enters quadratically in the diffractive
cross section.

The dominance of the AJM configurations leads to the expectation that the W dependence of diffraction at fixed Q 2 and
M2

X should be close to that for soft processes [138]. Another important contribution to diffraction is due to large size color
octet dipoles (qq̄g configurations in the virtual photon). These predictions are in a good agreement with the current HERA
data, see below.
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and the ZEUS data on xP�
D(3)
r , the normalization of the predictions of the H1 fit B is somewhat smaller than that of the ZEUS

fit [73].
One should also mention that the value of ↵P(0) at low virtualities Q 2 obtained by the H1 and ZEUS analyses are very

close: the H1 value of ↵P(0) in Eq. (91) should be compared to ↵P(0) = 1.11 � 1.12 ± 0.02 obtained by ZEUS [73].

3.6.2. Diffractive structure function FD(4)
2

The measurement of the t dependence of hard inclusive diffraction and the structure function FD(4)
2 can be performed by

detecting the final state proton. This was done using the forward proton spectrometer (FPS) by the H1 collaboration [62]
and the leading proton spectrometer (LPS) by the ZEUS collaboration [72]. In the following, we focus on the H1 results since
we used the H1 Fit B as an input for our calculations of nuclear shadowing.

In the kinematic range 2 < Q 2 < 50 GeV2 and xP < 0.02, the t dependence of FD(4)
2 was parameterized in a simple

exponential form with a constant slope,

FD(4)
2 (x,Q 2, xP, t) = eBdiff(t�tmin)FD(4)

2 (x,Q 2, xP, tmin), (92)

where Bdiff ⇡ 6 GeV�2 [62]. Note that this value is somewhat lower (but still consistent) than the ZEUS LPS result,
Bdiff = 7.0 ± 0.3 GeV�2 [72].

After the integration over t , the FPS data on �
D(3)
r [62] can be compared to the LRG data [61]. A point-by-point comparison

shows that

�
D(3)
r (LRG)

�
D(3)
r (FPS)

= 1.23 ± 0.03 (stat.) ± 0.16 (syst.). (93)

Eq. (93) is interpreted as that the excess of events in the LRG method compared to the FPS method must come from the
proton dissociation into the states with the invariant massMY < 1.6 GeV.

The FPSmethod also allows one to find the relation between the sub-leading cross sections obtained in the twomethods:

nR(LRG)

nR(FPS)
= 1.39 ± 0.48 (exp.) ± 0.29 (model). (94)

Eqs. (93) and (94) mean that the QCD prediction for the diffractive structure function FD(3)
2 , which would be consistent

with the H1 FPS data [62], is obtained by scaling down fits A and B for the Pomeron PDFs by the factor 1.23 and the constant
nR by the factor 1.39. This is illustrated in Fig. 21 (taken from Ref. [62]), where the scaled QCD predictions are compared to
the H1 FPS data. The solid curves correspond to fit A in the kinematic region used in the fit (see comments for Fig. 20); the
dashed curves correspond to fit A extrapolated beyond the kinematic region used in the fit; the dotted curves correspond
to the Pomeron contribution only. Since the FPS data extend to larger values of xP, Fig. 21 clearly indicates the need for the
sub-leading Reggeon contribution for xP > 0.01.

3.6.3. Tests of the QCD factorization using other diffractive DIS processes
The diffractive parton distributions (DPDFs) f D(4)

j are process-independent universal quantities that enter the pQCD
description of such diffractive processes as inclusive DIS diffraction [60–62,66,67,69,71–73], diffractive electroproduction
of jets [63,64,70], diffractive photoproduction of jets [64,151,152], diffractive electroproductions of heavy quarks [65,153],
and diffractive photoproduction of heavy quarks [154]. The Q 2 dependence of f D(4)

j is given by the DGLAP equations with
the same splitting functions as in the case of inclusive DIS. Hence, a wide range of processes (some of them are mentioned
above) can be described from the first principles in the framework of perturbative QCD using universal non-perturbative
DPDFs as input.

Measurements of diffractive DIS processes serve as stringent tests of theQCD factorization for hard diffraction and further
constrain diffractive PDFs. One example of such a diffractive process, which predominantly probes the gluon diffractive PDF,
is diffractive production of dijets, see Fig. 22. The figure depicts diffractive production of dijets in DIS. Replacing the virtual
photon by the real (quasi-real) one, it is possible to study diffractive photoproductions of dijets. In the latter process, the
hard scale is given by the transverse momenta of the jets.

Both H1 and ZEUS collaborations measured diffractive dijet production. In detail, the H1 collaboration measured
diffractive dijet production in DIS (4 < Q 2 < 80 GeV2) and photoproduction (Q 2 < 0.01 GeV2) in the reaction
ep ! e jet1 jet2 XY [64,151]. It was found that, in DIS, the data are described well by diffractive PDFs extracted from the
fits to the H1 data on inclusive diffraction in DIS [61,62]. The dijet data clearly favors fit B, which corresponds to a smaller
(compared to fit A) gluon diffractive PDF fg/P(�,Q 2) in the large � limit, see Fig. 19.

In photoproduction of dijets, theoretical predictions based on fit B overestimate the data by approximately a factor
of two (both for the direct and resolved contributions). This indicates the breakdown of the QCD factorization theorem
for the photoproduction, similarly to the case of factorization breaking in hadron-induced diffractive dijet production, see
e.g., [155]. One should note that while the factorization breaking is expected for the resolved component of the real photon
(since the resolved component consists of hadronic fluctuations interactingwith the targetwith typical, large hadronic cross
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It is also instructive to consider diffraction in the Breit frame. It is easy to see that the AJM contribution corresponds to
the following process: a parton with the light-cone fraction x absorbs � ⇤ and turns around so that it has the momentum
(xP, �xP). To produce a color neutral system with the typical mass squared M2

X ⇡ Q 2, it has to pick up a parton with the
momentum (x0P, x0P) leading to M2

X = Q 2(x0/x) and pull it out of the nucleon. This implies that although the diffraction
involves the absorption of � ⇤ by one parton, it requires the presence of a strong short-range correlation in rapidity between
the partons in the nucleon light-cone wave function [138]. A nearly hadron-level strength of the diffraction indicates that a
strong color screening takes place in the proton wave function for small x locally in x (in rapidity �Y = ln x0/x).

3.6. Summary of the QCD analysis of the data on hard diffraction at HERA

3.6.1. Diffractive structure function FD(3)
2

The bulk of the data on diffraction in DIS at HERA comes from inclusive measurements performed by H1 and ZEUS
collaborations [60–73]. When the t dependence of the diffractive cross section is not measured [60,61,67,71,73], the data
are analyzed in terms of the diffractive structure function FD(3)

2 :

FD(3)
2 (x,Q 2, xP) =

Z tmin

�1GeV2
dtFD(4)

2 (x,Q 2, xP, t), (86)

where FD(4)
2 is defined by Eq. (83); tmin = �m2

Nx
2
P/(1 � xP) ⇡ �m2

Nx
2(1 + M2

X/Q
2)2 with mN the nucleon mass.

The weak (logarithmic) Q 2 dependence of FD(3)
2 , which follows from the QCD evolution equations for diffractive PDFs,

was observed experimentally, see, e.g., Fig. 21 below.
As we discussed above the diffractive structure function FD(3)

2 is given in terms of the diffractive PDFs f D(3)
j :

FD(3)
2 (x,Q 2, xP) = �

X

j=q,q̄,g

Z 1

�

dy
y
Cj

✓
�

y
,Q 2

◆
f D(3)
j (y,Q 2, xP). (87)

Extensive studies of hard inclusive diffraction at HERA were performed both by H1 and ZEUS collaborations [60–73].
Within the normalization uncertainties, the measurements of the two collaborations are in good agreement, see, e.g., the
comparison in Ref. [72].

It was suggested in [149] that diffraction in hard process can be treated as scattering off a t-channel exchange – Pomeron
– which has the same properties for different xP. We have argued above that the dominant source of the diffraction in DIS is
the AJM-like configurations in the virtual photon. In a wide energy range, these hadron-like configurations should interact
through a coupling to a soft ladder. The properties of such a ladder (or a multiladder system), which are local in rapidity,
should weakly depend on its length in rapidity proportional to ln(x0/xP), where x0 ⇠ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make an additional soft/Regge
factorization assumption (which does not contradict the data) that DPDFs f D(3)

j can be presented as a sum of the leading
Pomeron-exchange term and the subleading Reggeon-exchange term (the latter plays a role only at large xP). Each of the
terms is given as the product of the corresponding flux factors and the parton distribution functions,

f D(3)
j (�,Q 2, xP) = fP/p(xP)fj/P(�,Q 2) + nRfR/p(xP)fj/R(�,Q 2), (88)

where fP/p(xP) is the Pomeron flux factor; fR/p is the Reggeon flux factor; fj/P(�,Q 2) can be interpreted as the PDF of flavor j
of the Pomeron; fj/R(�,Q 2) are PDFs of the subleading Reggeon; nR is a small free parameter determined from the fit to the
data. The Q 2 dependence of fj/P(�,Q 2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather a hypothesis of the soft matching
to the non-perturbative QCD, which is supported by the data (see the discussion below).

The schematic view of the separation of f D(3)
j into the flux factors and the corresponding PDFs used in Eq. (88) is presented

in Fig. 18. The figure also illustrates the physical interpretation of the variable �: � is the light-cone fraction of the Pomeron
(or Reggeon) momentum carried by the interacting parton.

It is important to emphasize that the words ‘‘Pomeron’’ and ‘‘Reggeon’’ are used in the analysis of the hard diffraction
in DIS only as bookkeeping terms since those terms are reserved for soft hadron–hadron interactions. The parameters
(intercepts, slopes, etc.) of the Pomeron and Reggeon exchanges as determined from the phenomenology of soft
hadron–hadron interactions may differ from the parameters obtained from the fits to the hard diffractive data at HERA.

In Eq. (88), the Pomeron and Reggeon flux factors have the following form:

fP/p(xP) =
Z tmin

�1GeV2
dt AP

eBPt

x2↵P(t)�1
P

, ↵P(t) = ↵P(0) + ↵0
Pt,

fR/p(xP) =
Z tmin

�1GeV2
dt AR

eBRt

x2↵R(t)�1
P

, ↵R(t) = ↵R(0) + ↵0
Rt. (89)
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Дифракция в ep DIS на HERA (2)
• Удобно использовать (подтверждается данными):

argued above that the dominant source of the diffraction in DIS is the AJM-like config-
urations in the virtual photon. In a wide energy range, these hadron-like configurations
should interact through a coupling to a soft ladder. The properties of such a ladder (or
a multiladder system), which are local in rapidity, should weakly depend on its length in
rapidity proportional to ln(x0/xIP ), where x0 ∼ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make
an additional soft / Regge factorization assumption (which does not contradict the data)

that DPDFs fD(3)
j can be presented as a sum of the leading Pomeron-exchange term and

the subleading Reggeon-exchange term (the latter plays a role only at large xIP ). Each
of the terms is given as the product of the corresponding flux factors and the parton
distribution functions,

fD(3)
j (β, Q2, xIP ) = fIP/p(xIP )fj/IP (β, Q

2) + nIRfIR/p(xIP )fj/IR(β, Q
2) , (88)

where fIP/p(xIP ) is the Pomeron flux factor; fIR/p is the Reggeon flux factor; fj/IP (β, Q2)
can be interpreted as the PDF of flavor j of the Pomeron; fj/IR(β, Q2) are PDFs of the
subleading Reggeon; nIR is a small free parameter determined from the fit to the data.
The Q2 dependence of fj/IP (β, Q2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather
a hypothesis of the soft matching to the non-perturbative QCD, which is supported by
the data (see the discussion below).
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Fig. 18. A schematic representation of the factorization of the diffractive PDFs into the product
of the Pomeron or Reggeon flux factor and the corresponding PDFs, see Eq. (88).

The schematic view of the separation of fD(3)
j into the flux factors and the corresponding

PDFs used in Eq. (88) is presented in Fig. 18. The figure also illustrates the physical
interpretation of the variable β: β is the light-cone fraction of the Pomeron (or Reggeon)
momentum carried by the interacting parton.

It is important to emphasize that the words ”Pomeron” and ”Reggeon” are used in the
analysis of the hard diffraction in DIS only as bookeeping terms since those terms are
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should interact through a coupling to a soft ladder. The properties of such a ladder (or
a multiladder system), which are local in rapidity, should weakly depend on its length in
rapidity proportional to ln(x0/xIP ), where x0 ∼ 0.01.

In line with the suggestion of [149], the QCD analyses of the HERA diffractive data make
an additional soft / Regge factorization assumption (which does not contradict the data)

that DPDFs fD(3)
j can be presented as a sum of the leading Pomeron-exchange term and

the subleading Reggeon-exchange term (the latter plays a role only at large xIP ). Each
of the terms is given as the product of the corresponding flux factors and the parton
distribution functions,

fD(3)
j (β, Q2, xIP ) = fIP/p(xIP )fj/IP (β, Q

2) + nIRfIR/p(xIP )fj/IR(β, Q
2) , (88)

where fIP/p(xIP ) is the Pomeron flux factor; fIR/p is the Reggeon flux factor; fj/IP (β, Q2)
can be interpreted as the PDF of flavor j of the Pomeron; fj/IR(β, Q2) are PDFs of the
subleading Reggeon; nIR is a small free parameter determined from the fit to the data.
The Q2 dependence of fj/IP (β, Q2) is given by the DGLAP evolution equations.

Note that Eq. (88) does not follow from the QCD factorization theorem, but it is rather
a hypothesis of the soft matching to the non-perturbative QCD, which is supported by
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j into the flux factors and the corresponding

PDFs used in Eq. (88) is presented in Fig. 18. The figure also illustrates the physical
interpretation of the variable β: β is the light-cone fraction of the Pomeron (or Reggeon)
momentum carried by the interacting parton.

It is important to emphasize that the words ”Pomeron” and ”Reggeon” are used in the
analysis of the hard diffraction in DIS only as bookeeping terms since those terms are
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Потоковый 
фактор 

The results of the H1 QCD fit in terms of the diffractive quark and gluon PDFs, fu/IP (β, Q2)
and fg/IP (β, Q2), at Q2 = 2.5 GeV2 as functions of β are presented in Fig. 19. The solid
curves correspond to fit B; the dotted curves correspond to fit A. The difference between
fits A and B is that while the parameters Aj , Bj and Cj in Eq. (90) are free in fit A,
Cg = 0 for the gluon PDF in Fit B.
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Fig. 19. The diffractive quark and gluon PDFs fj/IP (β, Q
2) at Q2 = 2.5 GeV2 as functions of β.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is
determined from the scaling violations of FD(3)

2 . However, at large β, the scaling violations
of FD(3)

2 are predominantly determined by the quark diffractive PDFs. Therefore, the
gluon diffractive PDF at large β is very weakly constrained by the data, which allows one
(requires) to consider two scenarios (fits A and B) of the gluon diffractive PDFs with a
different behavior in the large-β limit, see the right panel of Fig. 19.

Note that the large support of the diffractive PDFs at large β means that the diffraction
is enhanced in the M2

X/Q
2 ∼ 1 region, resulting in a smaller relative contribution of the

triple Pomeron contribution to diffraction, see Sec. 5.1.3.

One should mention that both fits A and B correspond to very similar values of αIP (0)
and nIR:

Fit A : αIP (0)= 1.118± 0.008 , nIR = (1.7± 0.4)× 10−3 ,

Fit B : αIP (0)= 1.111± 0.005 , nIR = (1.4± 0.4)× 10−3 . (91)

It is important to note that these values of the Pomeron intercept αIP (0) are very close
to the one observed for soft hadron-hadron interactions, αIP (0) = 1.0808 [131]. As we
explained in Sec. 3.1, this justifies the use of the color fluctuation approximation for the
interaction with three and more nucleons of the nuclear target.

As seen from Fig. 19, the gluon diffractive PDF is much larger than the quark one. We shall
later show that this will lead to the prediction that the leading twist nuclear shadowing
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• H1, ZEUS определили партонные плотности в “Помероне”:  

Партонная плотность 
“Померона”

• Hеобходимая информация для численных предсказаний.
   Важно, что gP >> qP .
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• Предсказываем большие экранировки для кварков и глюонов
 Глюонные экранировки > кварковые экранировки  ➞ значительные в FL

A(x,Q2)

Электронно-Ионный Коллайдер (EIC) и LHeC (2020?)- идеальнo 
подходят для проверки наших предсказаний! 

 Модельная зависимость мала 
для не слишком малых х и  
средних А

 Антиэкранировки - “руками” 
требуя сохранение правила сумм 
полного импульсa

Предсказания для ядерных партонных распределений
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Fig. 31. Predictions for nuclear shadowing at the input scale Q2
0 = 4 GeV2. The ratios Rj (ū and

c quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4. The four upper panels are
for 40Ca; the four lower panels are for 208Pb. Two sets of curves correspond to models FGS10 H
and FGS10 L (see the text).
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Уже сейчас и в ближайшем будущем, глюонные ядерные экранировки из:
• жесткие процессы в pA рассеянии на БАК (ALICE, CMS, ATLAS, LHCb)
• фоторождениe J/𝜓 в Pb-Pb УПС (ALICE)
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Предсказания для формы ядерных партонных распределнений на начальной 
шкале Q02 = 4 GeV2 ― граничные условия для Q2 эволюции:

Предсказания для ядерных партонных распределений (2)

Различия между FGS10_H и FGS10_L уменьшаются по мере эволюции.
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Fig. 33. Prediction for nuclear PDFs and structure functions for 40Ca. The ratios Rj (ū and c
quarks and gluons) and RF2 as functions of Bjorken x at Q2 = 4, 10, 100 and 10,000 GeV2. The
four upper panels correspond to FGS10 H; the four lower panels correspond to FGS10 L.
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Большие глюонные экранировки = большие экранировки для FL
A  :

Предсказания для ядерной структурной функции FL
A

5.2 Nuclear shadowing in longitudinal structure function FA
L (x,Q

2)
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Fig. 35. Nuclear shadowing for the longitudinal structure function FL(x,Q2). The ratio of the
nuclear to nucleon longitudinal structure functions, FA

L (x,Q2)/[AFN
L (x,Q2)], as a function of

Bjorken x for different values of Q2. The upper row of panels corresponds to 40Ca; the lower
row is for 208Pb. Two sets of curves correspond to models FGS10 H and FGS10 L.

The longitudinal structure function FL(x,Q2) is sensitive to the gluon distribution at
small x. To the leading order in the strong coupling constant αs, it reads [58]:

FL(x,Q
2) =

2αs(Q2)

π

1
∫

x

dy

y

(

x

y

)2 nf
∑

q

e2q

[(

1−
x

y

)

yg(y,Q2)

+
2

3

(

q(x,Q2) + q̄(x,Q2)
)

]

, (122)

where the sum runs over quark flavors; nf is the number of active flavors at given Q2.

Figure 35 presents our predictions for the ratio of the nuclear to nucleon longitudinal
structure functions, FA

L (x,Q2)/[AFN
L (x,Q2)], as a function of Bjorken x at different values

of Q2. The upper row of panels corresponds to 40Ca; the lower row is for 208Pb. The two
sets of curves correspond to models FGS10 H and FGS10 L. As one can see from the
figure, the amount of nuclear shadowing for FA

L (x,Q2) is compatible with that of the

90

FLA может быть измерено на EIC за счет изменения √s. 
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Pb-208
Сравнение с результатами глобального фиттирования

EPS09 = Eskola, Puukkunen, Salgado, JHEP 04 (2009) 065
HKN07 = Hirai, Kumano, Nakano, PRC 76(2007) 065207 

ratios of the nuclear to nucleon PDFs are plotted as a function of x at two fixed values of
Q2: Q2 = 4 GeV2 (upper panels) and Q2 = 10 GeV2 (lower panels).
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Fig. 53. Comparison of predictions of the leading twist theory of nuclear shadowing [the area
bound by the two solid curves corresponding to models FGS10 H (lower boundary) and FGS10 L
(upper boundary)], the EPS09 fit (dotted curves and the corresponding shaded error bands) [51],
and the HKN07 fit (dot-dashed curves) [45]. The NLO fj/A(x,Q

2)/[Afj/N (x,Q2)] ratios for the
ū-quark and gluon distributions in 208Pb are plotted as functions of x at Q2 = 4 GeV2 (upper
panels) and Q2 = 10 GeV2 (lower panels).

As one can see from Fig. 53, the three compared approaches give rather close values for
nuclear shadowing in the sea-quark channel for a wide range of x, 10−5 ≤ x ≤ 0.02−0.03.
For larger x, the HKN07 fit deviates from the other two due to the assumed antishadowing
for the sea quarks.

In the gluon channel, our approach suggests much larger shadowing at Q2 = 4 GeV2 than
that suggested by the extrapolation of the EPS09 and HKN07 results. Here, however,
one has to make a distinction. While the shadowing in the gluon channel is insignificant
in the HKN07 fit for all Q2 scales, at the input scale Q2

0 = 1.69 GeV2, the EPS09 fit
suggests very large gluon shadowing with the very large theoretical uncertainty [51]. This
is a consequence of the fact that the available data cannot constrain the nuclear gluon
PDF at small x. (Note also that the large gluon shadowing in the EPS09 fit is mostly
driven by the RHIC data which are not in the kinematics where the leading twist pQCD
is applicable, see the discussion in Sec. 8.) Indeed, since the relevant nuclear data for
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Fig. 54. The ratio of the gluon distributions in 208Pb and the nucleon, gA(x,Q2)/[AgN (x,Q2)],
as a function of x for the EPS09 fit at Q2 = 1.69 GeV2 (the dotted curve with the shaded error
band) and in the leading twist theory of nuclear shadowing at Q2 = 4 GeV2 (the shaded area
spanned by the two solid curves, the same as in Fig. 53).

Q2 ≥ 4 GeV2 exist only for x ≥ 10−2, one is forced to assume the dominance of the LT
approximation down to Q2 ≈ 1 GeV2 and use ad hoc assumptions about nuclear PDFs for
smaller x where they are not constrained by the data. When these data are not included
in the fit, the resulting error band is huge.

To illustrate this point, in Fig. 54 we present the ratio of the gluon distributions in
208Pb and in the nucleon, gA(x,Q2)/[AgN(x,Q2)], as a function of x for the EPS09 fit
at Q2 = 1.69 GeV2 (the dotted curve with the shaded error band) and for our leading
twist theory of nuclear shadowing at Q2 = 4 GeV2 (the shaded area spanned by the
two solid curves, the same as in Fig. 53). As one can see from Fig. 54, the predicted
amounts of nuclear shadowing in the gluon channel for x < 10−3 are similar in the two
approaches. However, after short evolution in Q2 from Q2

0 = 1.69 GeV2 to Q2 = 4 GeV2,
the shadowing in the gluon channel in the EPS09 fit significantly reduces and becomes
noticeably smaller than in our LT approach (compare the solid and dotted curves in the
right column of panels in Fig. 53).

We point out, again, that nuclear shadowing in the gluon channel is essentially uncon-
strained by the fixed-target data. The future Electron-Ion Collider, with its deep reach
in the nuclear shadowing region and a large lever arm in Q2 should significantly improve
our knowledge of the gluon parton distribution in nuclei.

Recently nuclear PDFs have also been extracted using neutrino DIS data and combining
the neutrino and lepton DIS data [52,187–192]. At the moment, the results of such extrac-
tions are controversial: while the analyses of Refs. [52,187–189] seem to indicate that the
nuclear corrections are different between the charged and neutral lepton DIS, the analyses
of Refs. [190–192] find no such difference.
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• Для кварков: экранировки сравнимы 
• Для глюонов: FGS10 экранировки самые 
  большие
➞ указание на большие глюонные экранировки
     в данных RHIC (инклюзивное рождение пионов
     в dAu) и БАК (фоторождение J/𝜓 в Pb-Pb УПС)
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 Теория экранировок лидирующего твиста позволяет предсказать 
зависимость от прицельного параметра b:  

Вероятность найти партон с данным x и b 

ядерная плотность 

b
xP+

Зависимость от прицельного параметра
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Fig. 40. Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and
208Pb (lower red surfaces). The graphs show the ratio Rj(x, b,Q2) of Eq. (132) as a function of
x and the impact parameter |!b| at Q2 = 4 GeV2. The top panel corresponds to ū-quarks; the
bottom panel corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10 H
was used (see the text).

results for the b-integrated nPDFs (i.e., usual nPDFs), see Figs. 33 and 34. All curves
correspond to our input scaleQ2

0 = 4 GeV2 and to model FGS10 H. Note that since nuclear
shadowing depends on the impact parameter, so should antishadowing. We constrain the
amount of antishadowing by requiring the conservation of the momentum sum rule locally
in the impact parameter b [compare to Eq. (118)]:

∑

j=q,q̄

1
∫

0

dxxfj/A(x,Q
2, b) +

1
∫

0

dxxgA(x,Q
2, b) = 1 . (133)

100

R

j(x, b,Q2) =
fj/A(x,Q

2
, b)

ATA(b)fj/N (x,Q2)

• Зависимость от b необходима для:
- жестких процессов в pA и AA рассеянии на LHC, где определ. центральность
- эксклюзивных процессов в еА рассеянии на EIC и LHeC

       [PDF(x,b)=GPD(x,b)]
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Программа pА рассеяния на БАК:

• вспомогат. роль: понимания результатов АА программы, т.е., разделения 
эффектов начального и конечного состояния
 ➞ определениe ядерных партонных распределений (включая b зависимость)
     в рождении струй, электрослабых бозонов, фотонов, тяжелых кварков

Жесткие процессы в pA рассеянии на БАК

• самост. роль: исследование ядерных партонных распределений
➞ определение величины ядерных экранировок
➞ исследованиe явления насыщения (глюонных плотностей) при малых х
➞ ультрапериферические столкновения (проверка АА и самостоятельно)

C. Salgado et al.,“Proton-nucleus collisions at the LHC: 
Scientific opportunities and requirements”,  J. Phys. G. 39 
(2012) 015010.

VG, M. Guzzi, P.M. Nadolsky,
M. Strikman, B. Wang, EPJ A (2013) 

Eur. Phys. J. A (2013) 49: 35 Page 7 of 15
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Fig. 5. The nuclear correction ratio rσ(y), as defined in eq. (14), plotted for 70 < Q < 110 GeV vs. the lepton pair rapidity y
in proton-lead collisions.

where v = y or QT , in select ranges of Q and/or y. The
denominator is calculated assuming the absence of nuclear
modifications of nuclear PDFs, i.e., according to eq. (7)
with Rj(x,Q2) = 1. The cross sections are computed for
the following values of the center-of-mass energy at the
LHC:

√
SpA = 4.4TeV and 8.8TeV in the proton-lead

scattering and
√

SAA = 2.76TeV and 5.52TeV in the lead-
lead scattering.

In the perturbative resummed form factor (2), the
functions A, B, and Cj/a were evaluated to orders α3

s, α2
s,

and αs, respectively [14,38–40]. The scale parameters in

W̃ pert were chosen as {C1 = C3 = 2b0, C2 = 2}. The non-
perturbative contributions were introduced according to
ref. [28] using the b∗ convention with bmax = 1.5GeV−1

and W̃NP (b) = exp
[
−a b2

]
. We take a = 1.1GeV2 by de-

fault in Z production and a = 0.3 or 1.1GeV2 in low-Q
Drell-Yan production. We assume the same a value in the
numerator and denominator of the ratio rσ, so that the
dependence on a cancels well inside rσ. The predictions
for rσ that will be shown are hardly sensitive to the value
of a that is assumed.

The Y term was estimated to NLO in photon-mediated
subprocesses, and to NNLO in the pure Z cross section by
using the two-loop correction from ref. [41]. The renormal-
ization and factorization scales were set to 2Q in the Y
piece. All these settings are in good agreement with AT-
LAS QT distributions for pp → Z/γ∗X [42], as has been
found in ref. [28].

4.2 Proton-lead collisions

The rσ ratios for proton-lead collisions are shown in
figs. 5–7 for Z boson production in a representative in-
terval 70 < Q < 110GeV and, in figs. 8–10, for low-Q
Drell-Yan process at 5 < Q < 20GeV. The dashed purple
line and short-dashed black line were computed using the
FGS10 H and FGS10 L nuclear PDFs, respectively.

4.2.1 Z pole region

We start with the plots of the rσ ratio for the Z rapidity
distribution in fig. 5, as they are the simplest. In pA colli-
sions, the nuclear correction acts on the PDF of the lead
nucleus but not on the proton PDF. The nuclear correc-
tion depends on ξ2, which is of order x2c = τeff exp(−y)
for the most part. We can therefore understand the over-
all magnitude of the nuclear correction within 5–10% by
estimating x2c for the given y and QT , as has been argued
in sect. 3.3.

Since QT is much smaller than Q for the majority
of Z events, a scan of rσ(y) over y in fig. 5 essentially
translates into a scan over the momentum fraction x
in the PDF nuclear correction in fig. 3. Negative (pos-
itive) values of y correspond to large (small) values of
x = (Q/

√
SpA) exp(−y). The typical x value (equated to

x2c) can be found for each y from fig. 4 and table 1.

Пример: инклюзивное рождение 𝛾*/Z 
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Первые результаты pA программы преставлены на конференции в Тренто, Май 
2013, https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=216368

Жесткие процессы в pA рассеянии на БАК (2)

2/4ECT* Trento, May 2013                                                                    F. Arleo & D. d'Enterria

Workshop topicsWorkshop topics

• About 40 talks on proton-nucleus collisions at the LHC & related

    topics:

   EXP: ALICE (4), CMS (4), ATLAS (2), LHCb (1), LHCf (1), TOTEM (1)

            Multiplicities & spectra

            Azimuthal correlations

            Hard probes: jets, quarkonia

            Ultraperipheral collisions

   TH:  Gluon saturation (multiplicities & correlations)

           Nuclear PDFs

           Collective effects, hydrodynamics

           Quarkonia in cold nuclear-matter

           Constraints on hadronic MCs for UHE cosmic-rays

           Diffraction, multiparton interactions, ...

• Special seminar by J.P. Blaizot on Tuesday (17:00-18:00)
Из вступит. доклада F. Arleo & D. d’Enterria

Выделены те позиции, где 
мы можем сделать вклад

 ← VG, M. Zhalov, 1307.6689 
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Ультрапериферические pA и AA столкновения на БАК

2 The nuclear gluon distributions at small x in UPC at the
LHC

In a typical nucleus-nucleus collision, e.g., at RHIC or at the LHC, the nuclei collide head-on, interact
strongly, break up and produce a multi-particle final state containing nuclear debris, protons, neutrons,
and pions. However, there are rare situations when the nuclei pass each other at large impact parameters,
i.e., in the transverse plane, the distance between the two nuclei (the impact parameter b) is larger then
the sum of the nuclei radii, b > RA +RB, see the left side of Fig. 1. In this case, the short-range strong

b > RA + RB
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γ

γ

γ

γ
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101
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k 
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Figure 1: Left. The sketch of an ultra-peripheral nucleon-nucleus collision when the nuclei pass each other at
the large impact parameter b > RA+RB and interact via the field of their equivalent quasi-real photons. Right.
The flux of equivalent photons, kdNγ/dk, as a function of k for Pb-Pb collisions at the LHC (solid curve) and
RHIC (dotted curve). The flux is calculated in the rest frame of the target nucleus.

forces can be neglected and the interaction between the two nuclei is mediated by the electromagnetic
field in the form of equivalent quasi-real photons emitted by fast moving nuclei (charged ions). This
phenomenon is well-known in QED and is called the method of equivalent photons [16]. The energy
spectrum of the photons emitted by a fast moving nucleus (ion) with the charge Z at the transverse
distance b from the center of the nucleus reads [17]:

dNγ

dk d2b
=

Z2αemk

π2γ2

[
K2

1

(
k|b|
γ

)
+

1

γ2
K2

0

(
k|b|
γ

)]
, (1)

where αem is the fine-structure constant; k is the photon energy; γ is the nucleus Lorentz factor.
The distinctive feature of the UPC is that the photon-emitting nucleus either does not break up or

emits only a few neutrons through Coulomb excitation, leaving a substantial rapidity gap in the same
direction. These conditions can be readily used by identifying UPC in experiments.

The nucleus emits the photons coherently and, as a result, their wave length is larger than the
effective nuclear size. This limits the maximal energy kmax and dnγ/(dkd2b) falls off sharply for k >
kmax ≡ γ/RA. However, boosting the system in the rest frame of one of the nuclei, one simultaneously
boosts k and the spectrum of equivalent photons extends up to kmax = (γ2 − 1)/RA. An example of
this is presented on in Fig. 1 (right side), where we plot the flux of equivalent photons, kdNγ/dk, as a
function of k for Pb-Pb collisions at the LHC (

√
s = 2.75 TeV, γ ≈ 3000) and at RHIC (

√
s = 200 GeV,

γ ≈ 100) in the nuclear target rest frame. The flux kdNγ/dk was obtained by integrating dNγ/(dkd2b)
in Eq. (1) over the large impact parameter b ≥ 2RA.
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В pA и AA столкновениях ядра могут налетать на больших прицельных 
параметрах b > RA+RB ― это ультрапериферические столкновения (UPC).

При UPC ионы взаимодействуют посредством 
излучения квази-реальных фотонов (метод 
эквивалентных фотонов) , E. Fermi (1924)

Энергия фотонов ОГРОМНА 
в системе покоя одного из ядер 
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In a typical nucleus-nucleus collision, e.g., at RHIC or at the LHC, the nuclei collide head-on, interact
strongly, break up and produce a multi-particle final state containing nuclear debris, protons, neutrons,
and pions. However, there are rare situations when the nuclei pass each other at large impact parameters,
i.e., in the transverse plane, the distance between the two nuclei (the impact parameter b) is larger then
the sum of the nuclei radii, b > RA +RB, see the left side of Fig. 1. In this case, the short-range strong
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Figure 1: Left. The sketch of an ultra-peripheral nucleon-nucleus collision when the nuclei pass each other at
the large impact parameter b > RA+RB and interact via the field of their equivalent quasi-real photons. Right.
The flux of equivalent photons, kdNγ/dk, as a function of k for Pb-Pb collisions at the LHC (solid curve) and
RHIC (dotted curve). The flux is calculated in the rest frame of the target nucleus.

forces can be neglected and the interaction between the two nuclei is mediated by the electromagnetic
field in the form of equivalent quasi-real photons emitted by fast moving nuclei (charged ions). This
phenomenon is well-known in QED and is called the method of equivalent photons [16]. The energy
spectrum of the photons emitted by a fast moving nucleus (ion) with the charge Z at the transverse
distance b from the center of the nucleus reads [17]:
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where αem is the fine-structure constant; k is the photon energy; γ is the nucleus Lorentz factor.
The distinctive feature of the UPC is that the photon-emitting nucleus either does not break up or

emits only a few neutrons through Coulomb excitation, leaving a substantial rapidity gap in the same
direction. These conditions can be readily used by identifying UPC in experiments.

The nucleus emits the photons coherently and, as a result, their wave length is larger than the
effective nuclear size. This limits the maximal energy kmax and dnγ/(dkd2b) falls off sharply for k >
kmax ≡ γ/RA. However, boosting the system in the rest frame of one of the nuclei, one simultaneously
boosts k and the spectrum of equivalent photons extends up to kmax = (γ2 − 1)/RA. An example of
this is presented on in Fig. 1 (right side), where we plot the flux of equivalent photons, kdNγ/dk, as a
function of k for Pb-Pb collisions at the LHC (

√
s = 2.75 TeV, γ ≈ 3000) and at RHIC (

√
s = 200 GeV,

γ ≈ 100) in the nuclear target rest frame. The flux kdNγ/dk was obtained by integrating dNγ/(dkd2b)
in Eq. (1) over the large impact parameter b ≥ 2RA.

3

спектр эквивал. фотонов

☞ UPC позволяют изучать 𝜸A столкновения 

при энергиях фотона в 10 раз большие, чем 
на HERA.

A. Baltz et al., The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1
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Ультрапериферические pA и AA столкновения на БАК (2)

As one can see from Fig. 1, the spectrum of equivalent photons extends up to kmax = 500 TeV =
5×105 GeV, which is ten times larger than the energies achieved in photon-proton scattering at HERA.
This opens an opportunity to study very high-energy photon-nucleus physics at unprecedentedly high
energies.

Below we discuss three classes of processes in UPC at the LHC that can be used to study the poorly
known gluon distribution in nuclei at small x, see Fig. 2. In this processes, one of the nuclei (nucleus
B) serves as a photon source and the other nucleus (nucleus A) is a target. Graph a corresponds to
inclusive photoproduction of two jets with large transverse momenta (it can also be a pair of heavy
quarks); these processes access the usual gluon distribution in nuclei. Graph b corresponds to less
inclusive process, namely, to diffractive productions of two jets. (In such a process, the nucleus recoils
intact or is only slightly excited and there is a rapidity gap between the diffractively produced final
state X and the final nucleus and also between X and the two jets.) The process in graph b accesses
the diffractive gluon distribution in nuclei. Finally, graph c corresponds to the fully exclusive coherent
photoproduction of heavy vector mesons of nuclei, which probes the generalized gluon distribution in
nuclei. It is important to note that while generalized parton distributions are quite different from the
usual PDFs, at high energies (small Bjorken x), they can be related. In particular, small-x generalized
PDFs can be unambiguously expressed in terms of the impact parameter dependent usual PDFs. Below
we consider these processes in detail.

B
B

B
B

A A

A

X

X

jet 1 jet 1

jet 2 jet2

rapidity gap

(a) (b)

B
B

A
A

J/ψ,Υ

(c)

Figure 2: Three classes of processes that can be used to study the gluon distributions in nuclei at small x in
UPC: (a) inclusive photoproduction of two jets with large transverse momenta gives an access to the usual gluon
PDF; (b) diffractive productions of two jets gives an access to the diffractive gluon PDF; (c) exclusive coherent
photoproduction of heavy vector mesons probes the generalized gluon distribution (the impact parameter
dependent usual gluon PDF).

2.1 The usual gluon distribution in nuclei from inclusive photoproduction
of jets

As we explain in the Introduction, while the gluon distribution in nuclei at small x, x < 0.01, cannot be
determined from QCD fits to the available data and at present is quite uncertain, it can be predicted
using the leading twist theory of nuclear shadowing. An example of it is presented in Fig. 2.1 where we
plot the ratio of the gluon distribution in 208Pb over that in the free proton, gA(x,Q2

0)/[AgN(x,Q
2
0)],

as a function of x at Q2
0 = 4 GeV2 (labeled FGS10). Also, for comparison, we show the results of the

extraction of the gluon distribution in 208Pb from the global fits: EPS09 [12] and HKN07 [11].

4

Жесткие процессы в фотон-ядерном рассеянии можно использовать для 
изучения различных глюонных распределений в ядрах: 

Инклюзивное фоторождение 
струй (large pT or HQ jets):
обычное глюонное расп.

Диффракционное фоторождение
струй (large pT or HQ jets):
диффракционное глюонное 
распределение

Эксклюзивное рождение 
мезонов: обобщенное глюонное 
распределение (зависимое от 
прицельного парам.)
  

  

Перспектива теоретического сотрудничества 
с группой М. Класена (M. Klasen), 
унив. г. Мюнстера, Германия 
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Недавнее измерение коллаборацией ALICE (БАК) эксклюзивного фоторождения 
J/𝜓 в Pb-Pb УПС дает первое прямое доказательство больших глюонныx 
экранировок при x=10-3. 

Поток эквивалентных фотонов
от Pb (хорошо известен)

  

Эксклюзивное фоторождение J/ψ в Pb-Pb УПС на БАК 

- быстрота J/𝜓 

• Используя экспериментальное значение                                    и вычисленный               :

• Удобно определить фактор ядерного подавления S: 

E. Abbas et al.  [ALICE Collaboration], arXiv:1305.1467
B.Abelev et al. [ALICE Collaboration], arXiv:1209.3715 

VG, E. Kryshen, M. Strikman, M. Zhalov, PLB (2013) 
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�Pb ! J/ Pb

�IA
�Pb!J/ Pb(W�p) =

d��p!J/ p(W�p, t = 0)

dt
�A(tmin)

S(W�p = 92.4GeV) = 0.61+0.05
�0.04

S(W�p = 19.6GeV) = 0.74+0.11
�0.12
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Известно из HERA and LHCb

  

Однозначно вычисляется по ядерному 
форм-фактору

• Модельно-независимое определение S:

• Интерпретация S: S = величина глюонной ядерной экранировки.  

• Знаменатель:                           сечение в импульсном приближении:

of the experimental results is shown in Fig. 1. The 10 GeV < Wγp < 25 GeV range of energies
corresponding to the ALICE muon spectrometer acceptance in the measurement of J/ψ production
in PbPb UPCs at 2.76 TeV was studied in the old proton-target experiments at FNAL and CERN.
Statistics in those experiments was very low resulting in large experimental errors. The forward J/ψ
photoproduction cross section at higher energies was measured by the H1 and ZEUS collaborations
at HERA. As can be seen in Fig. 1, the cross sections measured by these two experiments do not
agree well, with the most recent H1 measurement being systematically higher over the entire energy
range.

The data in Fig. 1 was fitted using the following pQCD motivated expression [14]:

dσγp→J/ψp(Wγp, t = 0)

dt
= C0

[

1−
(MJ/ψ +mN)2

W 2
γp

]1.5[ W 2
γp

1002 GeV2

]δ

, (15)

The values of the free parameters C0 and δ were determined from the fit, resulting in C0 =
342± 8 nb/GeV2 and δ = 0.40± 0.01. Then, the corresponding values of the forward cross section
are:

dσγp→J/ψp(19.6 GeV, t = 0)

dt
= 86.9± 1.8 nb/GeV2 ,

dσγp→J/ψp(92.4 GeV, t = 0)

dt
= 319.8± 7.1 nb/GeV2 . (16)
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Figure 1: The fit to the forward J/ψ photoproduction cross section data [8].

To calculate ΦA(tmin) and to estimate its uncertainty, we evaluate ΦA(tmin) using three dif-
ferent nuclear form factors. In particular, we used the analytic parametrization of FPb(t) from
StarLight [15], which is widely used in analyses of experimental data as a UPC generator. We

5

VG, E. Kryshen, M. Strikman, M. Zhalov, PLB(2013) 
                                       

Данные не указывают на насыщение
(ослабление W зависимости)!

Эксклюзивное фоторожд. J/ψ в Pb-Pb УПС на БАК (2) 
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Эксклюзивное фоторожд. J/ψ в Pb-Pb УПС на БАК  (3) 
• Большая ядерная глюонная экранировка в теории экранировок лидирующего твиста 
согласуется с полученным значением S:

• StarLight MC и дипольный подход не описывают  S: 

which leads to the small nuclear suppression factor SA(Wγp). Indeed, the prediction for SPb(Wγp)
calculated using Eqs. (21) and (24) with the parameters from StarLight[15], which is shown by the
red dashed line in Fig. 2, significantly overestimates the data points that we model-independently
extracted from the ALICE data.

It is of particular interest to compare the nuclear suppression found from the analysis of the
ALICE data to the corresponding predictions of perturbative QCD. At high energies and small
transverse momenta of J/ψ (Wγp ! MJ/ψ ! pt), in the leading order pQCD, the cross section of
coherent J/ψ photoproduction on the proton is proportional to the proton gluon density Gp(x, µ2)
squared [19, 20]:

dσγp→J/ψp(Wγp, t = 0)

dt
= C(µ2)

[

xGp(x, µ
2)
]2

, (25)

where x = M2
J/ψ/W

2
γp is the fraction of the proton plus-momentum carried by the gluons; µ2 is the

hard scale. In the approximation that the Fermi motion of the quarks in charmonium is neglected,
the prefactor C(µ2) = M3

J/ψΓeeπ3αs
2(µ2)/(48αemµ8), where Γee is the width of the J/ψ electronic

decay.
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Figure 2: Comparison of the ALICE suppression factors with the estimates in the Glauber model with the color
dipole cross section and in the Starlight approach.

It is worth noting that the accuracy of the LO pQCD calculations of the J/ψ photoproduction
cross section is still a subject of discussions, see, e.g., [21, 22, 23]. In particular, the value of the
hard scale µ2 in the the gluon density is not fixed reliably. There are also some uncertainties in
estimates of the skewness of the gluon distributions, relativistic effects in the charmonium wave
function, and higher order corrections. Some of the corrections increase the cross section, others
– suppress it. However, there is a general consent that these effects mainly influence the absolute
value of the cross section but not its energy dependence. The total uncertainty of the LO pQCD
predictions is estimated in [21, 22] to be about 30% or less, while [23] suggests a larger uncertainty.

8

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

10-4 10-3 10-2 10-1

S P
b

x

ALICE
LTA+MNRT07

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

10-4 10-3 10-2 10-1

S P
b

x

ALICE
LTA+CTEQ6L1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

10-4 10-3 10-2 10-1

S P
b

x

ALICE
LTA+NNPDF

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

10-4 10-3 10-2 10-1

S P
b

x

ALICE
EPS09+CTEQ6L1

Figure 4. The same as in figure 3, but with the LO pQCD predictions evaluated at µ2 = 3 GeV2.

Figures 3 and 4 present the suppression factor S(Wγp) for Lead as a function of x =

M2
J/ψ/W

2
γp. The two ALICE data points (see the discussion above) are compared with the

LO pQCD predictions given by eq. (2.11) at µ2 = 2.4 GeV2 (figure 3) and at µ2 = 3 GeV2

(figure 4). In the two upper panels and in the lower left one, the factors of R(x, µ2) and

κA/N are calculated in the framework of the leading twist approximation (LTA) consisting

in the combination of the leading twist theory of nuclear shadowing [30] with the given

(MNRT07, CTEQ6L1, CTEQ6L, MRST04 and NNPDF) gluon distributions of the free

nucleon. In each case, we show the band of predictions which corresponds to the intrinsic

uncertainty of the leading twist theory of nuclear shadowing1. Note also that since the

predictions with the CTEQ6L1 and CTEQ6L and with the MRST04 and NNPDF gluon

distributions are rather close, we show only the representative examples of CTEQ6L1 and

NNPDF.

In the lower right panels, S(Wγp) is calculated using the leading order EPS09 param-

eterization of nuclear PDFs [31] extracted from the global QCD fit to available data; at

the leading order, EPS09 should be coupled with the CTEQ6L1 gluon distribution of the

free proton. Note that we use EPS09 as a typical representative example—predictions for

1The bands shown in figures 3 and 4 represent the theoretical uncertainty of the leading twist theory

of nuclear shadowing [30] associated with the ambiguity in the magnitude of the contribution describing

the interaction of the virtual photon with three and more nucleons of the nucleus. The upper and lower

boundaries of the bands correspond to the lower and higher limits on shadowing.
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(figure 4). In the two upper panels and in the lower left one, the factors of R(x, µ2) and

κA/N are calculated in the framework of the leading twist approximation (LTA) consisting

in the combination of the leading twist theory of nuclear shadowing [30] with the given

(MNRT07, CTEQ6L1, CTEQ6L, MRST04 and NNPDF) gluon distributions of the free

nucleon. In each case, we show the band of predictions which corresponds to the intrinsic

uncertainty of the leading twist theory of nuclear shadowing1. Note also that since the

predictions with the CTEQ6L1 and CTEQ6L and with the MRST04 and NNPDF gluon

distributions are rather close, we show only the representative examples of CTEQ6L1 and

NNPDF.

In the lower right panels, S(Wγp) is calculated using the leading order EPS09 param-

eterization of nuclear PDFs [31] extracted from the global QCD fit to available data; at

the leading order, EPS09 should be coupled with the CTEQ6L1 gluon distribution of the

free proton. Note that we use EPS09 as a typical representative example—predictions for
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of nuclear shadowing [30] associated with the ambiguity in the magnitude of the contribution describing
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– 10 –

M. Ryskin (1993); S. Brodsky et al (1994)

VG, M. Zhalov,
arXiv:1307.4526

Похожий вывод о плохом описании в рамках 
дипольнопой модели в
T. Lappi and H. Mäntysaari, arXiv:1301.4095 
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Ядерные глюонные распределения на EIC

• Измерение распределения глюонов в ядрах является одним из ключевых 
элементов программы Электpонно-Ионного Коллайдера (EIC).

• Основные цели:
- определить глюонное распределение как функцию х и b 
- попытаться обнаружить насыщение глюонной плотности

• Обычная глюонная gA(x,Q2) плотность будет измерена точно и в широкой 
кинематической области благодаря:

- широкой кинематичеcкой x-Q2 области 

- непосредственному доступу через 
        продольную FL(x,Q2) и F2c(x,Q2)

- измерение струй   

1.2.2 The Nucleus, a QCD Laboratory

The nucleus is a QCD “molecule”, with a complex structure corresponding to bound states
of nucleons. Understanding the formation of nuclei in QCD is an ultimate long-term goal of
nuclear physics. With its wide kinematic reach, as shown in Fig. 1.5 (Left), the capability
to probe a variety of nuclei in both inclusive and semi-inclusive DIS measurements, the
EIC will be the first experimental facility capable of exploring the internal 3-dimensional
sea quark and gluon structure of a fast-moving nucleus. Furthermore, the nucleus itself is
an unprecedented QCD laboratory for discovering the collective behavior of gluonic matter
at an unprecedented occupation number of gluons, and for studying the propagation of
fast-moving color charges in a nuclear medium.
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Figure 1.5: Left: The range in the square of the transferred momentum by the electron to the
nucleus, Q2, versus the parton momentum fraction x accessible to the EIC in e-A collisions at
two di↵erent center-of-mass energies, compared with the existing data. Right: The schematic
probe resolution vs. energy landscape, indicating regions of non-perturbative and perturbative
QCD, including in the latter, low to high saturated parton density, and the transition region
between them.

QCD at Extreme Parton Densities
In QCD, the large soft-gluon density enables
the non-linear process of gluon-gluon recom-
bination to limit the density growth. Such a
QCD self-regulation mechanism necessarily
generates a dynamic scale from the interac-
tion of high density massless gluons, known
as the saturation scale, Q

s

, at which gluon
splitting and recombination reach a balance.
At this scale, the density of gluons is ex-
pected to saturate, producing new and uni-
versal properties of hadronic matter. The
saturation scale Q

s

separates the condensed
and saturated soft gluonic matter from the
dilute, but confined, quarks and gluons in a
hadron, as shown in Fig. 1.5 (Right).

The existence of such a state of satu-
rated, soft gluon matter, often referred to as
the Color Glass Condensate (CGC), is a di-
rect consequence of gluon self-interactions in
QCD. It has been conjectured that the CGC
of QCD has universal properties common to
nucleons and all nuclei, which could be sys-
tematically computed if the dynamic satu-
ration scale Q

s

is su�ciently large. How-
ever, such a semi-hard Q

s

is di�cult to
reach unambiguously in electron-proton scat-
tering without a multi-TeV proton beam.
Heavy ion beams at the EIC could provide
precocious access to the saturation regime
and the properties of the CGC because the
virtual photon in forward lepton scattering
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A. Accardi et al., “Electron-Ion Collider: 
The Next QCD Frontier” , arXiv: 1212.1701 
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Ядерные глюонные распределения на EIC (2)

Пример того, как включение псевдо-данных EIC  глобальное фиттирование 
ведет к улучшение извлечения ядерных партонных распределений:

POETIC IV - Finland 2013: macl@bnl.gov
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Work in progress… (H. Paukkunen)
• Take the generated Pseudo-data and include it in a 

global fit
➡ Only 20x100 and 5x100 included in these plots

• More data (e.g. charm) will constrain this further
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M. Lamont, workshop POETIC IV,
Jyvaskyla (Finland), Sep. 2-5, 2013
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 Ядерные партонные распределения содержат фундаментальную 
информацию о структуре ядра в КХД и необходимы для феноменологии 
пертурбативной КХД и нелинейного режима КХД (насыщение).

 Ядерные партонные распределения при малых х подавлены – ядерная 
экранировка.

 До последнего времени, ядерные глюонные плотности в области 
экранировки (x < 0.01) были фактически неизвестны. 

 Недавний aнализ данных ALICE по фоторождению J/𝜓 в Pb-Pb УПС 
указывает на большую глюонную экранировку при x=10-3. 
  
 Теория экранировок лидирующего твиста делает предсказания для 
различных (обычных, дифракционных, зависящих от прицельного параметра) 
ядерных глюонных распределений.

 Эти предсказания важны для жестких процессов в pА рассеянии, 
ультрапериферических pА и АА столкновений на БАК и электpон-ядерного 
рассеяния на EIC и LHeC.

Заключение
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