Свойства и перспективы использования металлуглеродных композитов на основе пиролизованных дифталоцианинов.

Способ получения :

синтез и пиролиз дифталоцианинов в атмосфере аргона.

1. $UI_4 + 8 C_6 H_4 C_2 N_2$ 250(C), $Ar \rightarrow [C_{64} H_{32} N_{16}]U$ -

- для 4-х валентных d-элементов.

2. Y(Eu,Am) (CH₃COO)₃ + 8 C₆H₄C₂N₂ ^{250(C), Ar \rightarrow [C ₆₄H ₃₂N₁₆Y][•] - для 3-х валентных элементов (РЗЭ и актиниды).}

3. Для элементов, не образующих фталоцианины, напр.,
Тс, I др. – добавка в виде сухих солей в процессе синтеза РЗЭ.
пиролиз→ ^{800C, Ar}→ Me(U,Y)Cx (х ≈ 35-40)
4.Для газов (напр. Хе) – внедрение в углеродную матрицу под давлением в момент её образования.

Элементный состав углеродной матрицы YCx (вес.%) после пиролиза **Pc₂Y**

Температура,	углерод	водород	азот	иттрий
٥C				
1000	74,85	0,48	4,32	20,2
1200	80,12	0.03	1,34	20,1
1400	82,11	0,10	0,62	19,6

Плотность (насыпная) углеродного композита после пиролиза при 900С составляет 0,6 - 0,8г/см3 для гранул и 0,7 -0,9 г/см3 для порошка с диаметром частиц меньше 0,25мм.

Площадь поверхности открытых пор композита, выдержанного при 1200С, определённая методом БЭТ (адсорбционный способ с использованием газовой хроматографии), равна 10 - 40м²/г, площадь поверхности закрытых пор составляет, по нашей оценке, не менее 500м²/г.

Удельное сопротивление, измеренное относительно сопротивления графита, равно 2,7 Ом•см.

Структура молекулы дифталоцианина

1. Матрица для из углеродного композита для долговременного хранения высокоактивных отходов (ВАО) отработавшего ядерного топлива (ОЯТ) Некоторы цифры.

- Стандартный энергетический реактор
- (~1000MWt) производит около 27т ОЯТ (что \approx 3-м м³) р/а отходов в год.
- Вся мировая энергетика производит 200 000м³ НАО(94%) и САО(6%) и 10 000м³(1%) ВАО в год. По количеству активности в ВАО – 95% от всей суммы.
- Стоимость всего процесса кондиционирования РАО составляет около 5% от стоимости произведённой электроэнергии.

List of the minor actinides:

^{234, 236}U, ²³⁷Np, ^{238, 240,241,242}Pu, ^{241,242m,243}Am, ^{242,243,244}Cm

The most long-lived isotopes

	T1/2(years)		
Se-75	$6.5 \cdot 10^{4}$	Tc-99	2.13·10 ⁵
Kr-85	$1.07 \cdot 10^{1}$	Pd-107	6.5·10 ⁶
Sr-90	$2.85 \cdot 10^{1}$	Sn-126	1.0· 10 ⁵
Zr-93	$1.53 \cdot 10^{6}$	I-129	1,57 · 107
Nb-94	$2.03 \cdot 10^4$	Cs-135	$2.3 \cdot 10^{6}$

Review of Waste Immobilisation Matrices

D.G. Bennett, J.J.W. Higgo and S.M. Wickham

December 2001

матрица	Применение и	Технологический	Стоимость
	страна	процесс (состояние)	
стекло	ВАО, Франция и	Промышленное	Высокая
	Англия	использование	
керамика	BAO	В развитии и	Очень высокая
		мелкомасштабное	
		производство	
синрок	ВАО, Австралия,	В развитии,	Высокая – очень
	США	успешные пилотные	высокая
		испытания в	
		Австралии	
Минералы,	Кандидат для	На уровне	высокая
	внедрения	исследований	
напр., циркон	актинидов		

Динамика развития исследований

- 1986 -1997гг.: получение короткоживущих изотопов из мишеней UCx, ThCx, TbCx, GdCx ,LaCx на масссепараторе ИРИС. Наблюдение необычного характера удержания в мишени газообразных и легко летучих радионуклидов и исследование этого явления.
- 2003 -2006гг.(МНТЦ): иммобилизация индикаторных количеств Eu-152, Am-241, I-125 и Tc-99 в углеродной матрице.
- 2012-2013гг.(РФФИ): иммобилизация ОЯТ Нововоронежской АЭС с суммарной активностью 1 Ки.
- 2014-2016гг ФЦП: иммобилизация ВАО (100-1000 Ки)-?

Доля улетучивания радионуклидов благородных газов из облучённого протонами UCx в вакууме в зависимости от температуры (время выдержки при каждой температуре – 1 час). Радиусы атомов Kr, Xe и Rn, соответственно, 2.01, 2.2 и 2.4 А°.

Исследование структуры углеродного композита методами малоуглового рассеяния нейтронов (В.Т.Лебедев, В.М.Лебедев, Д.Н.Орлова), рентгеноструктурного анализа и измерения хим. сдвига (А.Е.Совестнов, А.А.Петрунин, Э.М. Фомин) и атомно-силовой микроскопии (Д.В.Лебедев, В.Ю.Байрамуков)

Метод малоуглового рассеяния нейтронов

Строение пористой матрицы на масштабах 10⁰ – 10² нм характеризуется двумя уровнями: малые поры с характерными радиусами ~ 3 – 6 нм,

агрегаты размерами ~ 40 – 100 нм и выше Наиболее пористыми являются пиролизаты иттрия, у которых на единицу массы приходится объем пор 0,41 см³/г, а суммарная площадь пор составляет $S_M = 4\pi r^2 \phi_M / V_C = 5,0.10^2 \text{ M}^2/\text{г}.$

По сравнению с пиролизатом иттрия, в образцах с самарием объем пор $\phi_{\rm M} = 0,24$ см³/г на ~ 40 %, а площадь S_M = 2,6·10² м²/г – на 50% ниже.

В пиролизате урана объем пор и их площадь еще меньше: $\phi_{\rm M} = 0,19$ см³/г, S_M = 0,8·10² м²/г.

r = 2.5 (Y),2.8(Sm), 6.3(U) R=40-60(U) и >100(Yи Sm)

Пример упаковки частиц большого и малых радиусов (нм).

Акт рождения структуры пиролизованного дифалоцианина. Кристаллы исходного ДФЦ иттрия(1), пиролиз 790С (2) и пиролиз 850С (3). 500×500 нм АСМ - метод

1

MKM.

Эволюция структуры дифталоцианина урана при пиролизе в зависимости от температуры: 1 – 500 С, 2 – 800 С, 3 – 880 С; поле сканирования 2×2

1 2 3

Пиролизат ДФЦ иттрия 1300С крупно-масштабное (60мкм) изображение

Крупномасштабная структура (10×10 мкм) пиролизованного Pc₂U Иммобилизация азотнокислых растворов ОЯТ Нововоронежской АЭС, Основные этапы технологии (В.И.Тихонов, В.К.Капустин., А.В.Попов, С.Н.Травкина)

1.Нейтрализация раствора аммиаком, осаждение гидроокисей, включая РЗЭ и актиниды. Сброс р/а цезия.

2.Растворение осадка гидроокисей в уксусной кислоте, получение сухих солей ацетатов.

3.Синтез и пиролиз (900С) дифталоцианинов.

Радионуклидный состав проб ОЯТ Нововоронежской АЭС (продукт 103).

Nº		Σα,	Σγ,	Бк/л				
		Бк/л	Бк/л					
	Время выдержки, лет			²⁴³ Am	²⁴¹ Am	¹⁵⁴ Eu	¹³⁷ Cs	¹⁴⁴ Ce
3068	3	4.6 ·10 ¹⁰	4.8 ·10 ¹⁰	1 10 ⁹	2.5·10 ¹⁰	1.4·10 ¹⁰	1.5·10 ⁹	3. 5·10 ⁹
3069	7	9 ·10 ¹⁰	6.45∙ 10 ¹⁰	2·10 ⁹	1.5·10 ⁹	1.9·10 ¹⁰	4.2·10 ¹⁰	-

1 - реактор, 2 - кожух реактора, 3 - насадка для улавливания паров фталонитрила, 4 - электрическая трубчатая печь, 5 - фильтр грубой очистки, б - фильтр тонкой очистки, 7 - горячая камера

Схема установки для внедрения радионуклидов ОЯТ в углеродную матрицу

Оценка эффективности фиксации радионуклидов ОЯТ в углеродной матрице в процессе синтезапиролиза фталоцианинов.

Объект измерения	Мощность дозы <i>,</i>
	мкр/с
Фильтр 5 (рис.)	0.8
Фильтр 6	0
Шланги (подача аргона и	6
выход отходящих при пиролизе	
газов)	
Реактор с продуктом	1163

Выход = 99,4%

Тест на термостабильность

Thermostability test (heating in vacuum)

- a release of iodine (I-125) from carbon matrix
- b release of Eu, Am and Tc

c – release of Eu before (black squares) and after (red squares) neutron irradiation

d – release of Cs, Yb, Eu, Am and Y from carbon matrix after irradiation (integral neutron flux \sim 10¹⁹n/cm²).

Скорость выщелачивания ($\mathbf{K} = \mathbf{A}_1 / \mathbf{A}_0 \cdot \mathbf{m}(\mathbf{\Gamma}) / \mathbf{S}(\mathbf{c}\mathbf{M}^{2)} \cdot \mathbf{t}(\mathbf{c}\mathbf{y}\mathbf{T}\mathbf{K}\mathbf{u})$) Am-241 из углеродной матрицы до (1) и после (2) облучения нейтронами (~10¹⁹ n/cm²).

Скорость выщелачивания Eu-152 из порошка углеродной матрицы разной дисперсности. Squares: fraction 0,25 - 0,5mm, cycles - \leq 0,25mm.

Подтверждение удержания на молекулярном уровне

Иммобилизация РАО в углеродную матрицу. Таким образом,

в процессе пиролиза дифталоцианина происходит образование наноструктур из замкнутых углеродных ячеек. Инкапсулирование в полости этих углеродных клеток атомов долгоживущих радиоактивных нуклидов предоставляет уникальные возможности для их долговременного хранения. Изоляционный барьер для инкапсулированных РАО осуществляется на молекулярном уровне, и эффективность и надёжность изоляции зависит только от устойчивости углеродного каркаса к различным внешним воздействиям: воды, температуры, радиации и т.д.

Сравнение основных параметров матриц для хранения ВАО:

боросиликатного стекла и углеродного композита

N⁰	параметр	Боросиликатное стекло	MeCx
1	Максимальная		
	температура, °С	1000	1200-1400 (в зависимости от
			состава радионуклидов)
2.	Выщелачивание,		
	г/см ² ·сутки	10-4 - 10 -7	10-7 - 10 -11
3.	Содержание		20 - 25 для РЗЭ и 30 - 40 для
	радионклидов,вес.%	20-35, (сумма оксидов)	актинидов, (сумма элементов)
4.	Плотность, г/см ³	3,0 – 3,6	1,2 – 1,8
5.	Радиационная	высокая	Высокая (слайды 27-29)
	устойчивость		
6.	Газовыделение	Не исключено	< 2% для Kr, Xe и Rn при 20 ºC
		(радиолиз)	
7	Механические	Удовлетворительные	Требуется герметичная упаковка
	свойства		

Основные результаты:

- 1.Синтезирован углеродный композит с внедрёнными ВАО Нововоронежсской АЭС (в количестве ~ 1 Ки).
- 2. Проведено исследование химической, термической и радиационной стабильности матрицы.
- Дополняющими друг друга методами МРН и АСМ определены размеры элементов структуры в диапазоне от единиц нм до 10 мкм, а также объём пустот.
- 4.Найдено соотношение «открытых» и «закрытых» пор.
- 5.Методом РСА определена эволюция структуры в диапазоне температур 800 1700С.
- Методом АСМ исследована топология поверхности ДФЦ иттрия и его пиролизатов в интервале температур 500-1700С.

Возможные направления исследования и технологических разработок. (ФЦП)

- 1. Модернизация технологии получения матриц.
- 2. Остекловывание.

3. Упаковка в герметичную оболочку из алюминия или нерж. стали.

4. Дополнительная герметизация путём нанесения на поверхность тонкого слоя карбида кремния.

ДРУГИЕ ВОЗМОЖНОСТИ ПРАКТИЧЕСКОГО ИСПОЛЬЗОВАНИЯ

1. ПОЛУЧЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ (20 ЛЕТ ЭКСПЛУАТАЦИИ НА КОМПЛЕКСЕ ИРИС,

~ ПОЛСОТНИ ПУБЛИКАЦИЙ, АВТ. СВИД. НА ИЗОБРЕТЕНИЕ)

- 2. МИКРОТВЭЛЫ.
- 3. СОРБЕНТЫ.
- 4. КАТАЛИЗАТОРЫ
- 5. РТГ (РАДИОИЗОТОПНЫЕ ЭЛЕКТРОГЕНЕРАТОРЫ)
- 6. ХРАНИЛИЩЕ ДЛЯ ГАЗОВ (авт. свид. на изобретение)
- 7. В МЕДИЦИНЕ (терапия в онкологии)

Мишени UCx, ThCx, TbCx, GdCx, LaCx, ZrCx, CmCx –

получение короткоживущих радионуклидов на масс-сепараторе в режиме on-line в широком диапазоне масс.

1. Скорость выделения рубидия (Rb-90,т_{1/2}=4,3мин.) из мишени ThCx 2100 C (Isolde,1994)

Твэл'ы для высокотемпературного реактора.

Основные требования:

1.Устойчивость до температуры 1000 – 1200°С
2.Радиационная устойчивость (отсутствие «распухания» и изменения состава)
3.Отсутствие газовыделения
4. И др.(плотность, теплопроводность и т.д.)

2. Микротвелы (прототип) Основа:UO₂, PuO₂, ThO₂

Микросферы из окислов этих элементов диаметром от 0,1 до 1мм, покрытые двумя-тремя слоями углерода и карбида кремния:

- 1- слой пористого углерода толщиной 25-100микрон;
- 2- слой плотного углерода толщ. 20-50 микрон
- 3-слой карбида кремния (непроницаемый для газов), толщина: 20-50 микрон
- 4- наружный слой плотного углерода

Получение:

- 1 –разложение ацетилена (1000-1500°С)
- 2 –разложение пропилена, метана или их смеси (1200-1500°C)
- 3- разложение метилтрихлорсилана(1400-1700^{оС)}

2. Твэлы (предложение) Углеродная матрица MeCx (Me - U, Pu, Th)

Термическая устойчивость – не менее 1600°С;

Радиационно устойчива;

Скорость выщелачивания водой продуктов деления – на уровне 10⁻⁹ – 10⁻¹¹ г/см²•сутки;

Замедлитель – углерод;

Плотность см. след слайд;

Газовыделение (Хе) – 1-2 % при 20С и не более 40 % при 1000С

Теплопроводность -?

В качестве прогноза – отсутствие "swelling'a" (распухания и растрескивания из-за выделения газов)

5. Радиоизотопные термоэлектрические генераторы (РТГ). Основное применение РТГ находят в космических аппаратах, предназначенных для исследования далёкого космоса, где становится неэффективным использование солнечных батарей. 4.8 кг Pu-238 - 300 Wt

6. Благородные газы в углеродной матрице Способ внедрения в углеродную матрицу тяжёлых благородных газов, криптона и ксенона В.И.Тихонов. П.Н.Москалёв, «Способ фиксации ксенона и криптона», авт. свидетельство СССР,02.10. 1982.