Изучение столкновений легких и тяжелых ядер в эксперименте PHENIX на коллайдере RHIC

В. Рябов (ЛРЯФ)

Циклы работы

RHIC Run	Year	Species	Energy	Ldt
Run-1	2000	Au+Au	130 GeV	1 μb-1
Run-2	2001-2	Au+Au	200 GeV	24 μb-1
		Au+Au	19 GeV	
		p+p	200 Gev	150 nb-1
Run-3	2002/3	d+Au	200 GeV	2.74 nb-1
		p+p	200 GeV	0.35 nb-1
Run-4	2003/4	Au+Au	200 GeV	241 μb-1
		Au+Au	62.4 GeV	9 μb-1
Run-5	2005	Cu+Cu	200 GeV	3 nb-1
		Cu+Cu	62.4 GeV	0.19 nb-1
		Cu+Cu	22.4 GeV	2.7 μb-1
Run-6	2006	p+p	200 GeV	10.7 pb-1
		p+p	62.4 GeV	100 nb-1
Run-7	2007	Au+Au	200 GeV	813 μb-1
Run-8	2007/2008	d+Au	200 GeV	80 nb-1
		p+p	200 GeV	5.2 pb-1
		Au+Au	9.2 GeV	
Run-9	2009	p+p	200 GeV	16 pb-1
		p+p	500 GeV	14 pb-1
Run-10	2010	Au+Au	200 GeV	1.3 nb-1
		Au+Au	62.4 GeV	100 μb-1
		Au+Au	39 GeV	40 μb-1
		Au+Au	7.7 GeV	260 mb-1
Run-11	2011	p+p	500 GeV	27 pb-1
		Au+Au	200 GeV	915 μb-1
		Au+Au	27 GeV	5.2 μb-1
		Au+Au	19.6 GeV	13.7 M events
Run-12	2012	p+p	200 GeV	9.2 pb-1
		p+p	510 GeV	30 pb-1
		U+U	193 GeV	171 μb-1
		Cu+Au	200 GeV	4.96 nb-1

Двенадцать циклов работы:

- ✓ 10 энергий (√s)
- ✓ 6 комбинаций ядер

Непрерывное повышение
 светимости пучков

 Программа сканирования по энергиям взаимодействия

❖ Run13 – p+p @ 500 ГэВ

18.06.2013

Открытие сКГП

✤ В 2005 году (QM-2005) все коллаборации на RHIC сделали заявление об открытии нового состояния – сильновзаимодействующей КГП:

✓ гашение струй

✓ эллиптический поток, зависимость потока от массы, n_q

- ✓ мягкие прямые фотоны, T > 200 МэВ
- ✓ "барионная загадка"

 Интерпретация результатов и численное описание требуют понимания CNM эффектов, доступных для изучения в столкновениях легких и тяжелых ядер:

✓ RHIC, d+Au @ 200 ГэВ
✓ LHC, p+Pb @ 5 ТэВ

Double ridge, p+Pb @ 5 TeV (ALICE, PL B719,29) - I

Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high multiplicity events

Double ridge, p+Pb @ 5 TeV (ALICE, PL B719,29) - II

* The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and p_T bins, and the widths show no significant evolution with event multiplicity or p_T

Near-side ridge is accompanied by an essentially identical away-side ridge.

The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients

Угловые Δφ, ΙΔη I = 0.48-0.7, d+Au @ 200 GeV ФЕНИКС

✤ Азимутальные корреляции между адронами, разделенными на 0.48-0.7 единиц по быстроте при различных импульсах триггерных частиц.

✤ Корреляции показаны для центральных (Yc), периферийных (Yp) столкновений и их разницы, $\Delta Y = Yc - Yp$

◆ Остаточные азимутальные корреляции для ∆Ү согласуются с предположением о наличие эллиптического потока.

Угловые Δφ, |η| = **0.48-0.7**, **ФЕНИКС**

♦ Результаты RHIC и LHC, v₂/ε, в зависимости от множественности
♦ v2/ε следует одной универсальной зависимости не смотря на различие в
энергии взаимодействия ядер (x25) и эксцентриситете (x1.5)
♦ Измерения в d+Au/p+Pb и Au+Au/Pb+Pb взаимодействиями следуют одной универсальной зависимости.

Наблюдаются пики в области прямой (Δφ ~ 0) и обратной (Δφ ~ π) струй
 Прямое указание на наличие азимутальной корреляции между адронами,
 разделенными на несколько единиц по быстроте

Подтверждение, что ранее представленные результаты ФЕНИКС не являются артефактом остаточных струеподобных корреляций

R_{AA}, p/π: Au+Au @ 200 ГэВ

$$R_{AA} = \frac{(dN/dp_T)^{Ad+Ad}}{N_{coll}^{Ad+Ad}(dN/dp_T)^{p+p}}$$

Сильная эволюция R_{AA} с центральностью для π, К, ф, но не для протонов

- ♦ Поведение ф мезона ближе к мезонам, чем к барионам

→ рекомбинации партонов - доминирующий механизм адронизации → тепловой источник партонов

R_{dA}, p/π: d+Au @ 200 ГэВ

- Сильная эволюция R_{AA} с центральностью для протонов, но не π , К, ϕ
- р/π монотонно возрастает с центральностью d+Au столкновений
- Аналогично случаю Au+Au, наблюдается зависимость эффектов от числа валентных кварков, а не от массы частиц

Cronin enhancement vs. \sqrt{s} and PID

Cronin = многократное мягкое перерассеяние?
 Откуда партон знает в какой адрон он фрагментирует?

e_{HF}: d+Au/Au+Au @ 200 ГэВ

• e_{HF} от полулептонных распадов адронов, содержащих *c* и *b* - кварки
 • R_{dA}(e_{HF}) ~ 1 в периферийных столкновениях, избыточный выход в центральных
 • Различие в CNM эффектах может объяснить отличие в R_{dA} между π⁰ и e_{HF}

e_{HF}: d+Au/Cu+Cu @ 200 ГэВ

 $\begin{array}{l} <\!\!N_{coll}\!\!>_{dAu} = 6.6 \ \& <\!\!N_{coll}\!\!>_{CuCu} = 5.1 \\ <\!\!N_{part}\!\!>_{dAu} = 7.7 \ \& <\!\!N_{part}\!\!>_{CuCu} = 6.4 \end{array}$

 $<N_{coll}>_{dAu} = 15.1 \& <N_{coll}>_{CuCu} = 22.3 <<N_{part}>_{dAu} = 15.6 \& <N_{part}>_{CuCu} = 21.2$

✤ Сильная зависимость R_{dA} от центральности:

- ✓ подавление ~ 20% в центральных столкновениях
- ✓ сильный избыток выхода в периферийных столкновениях
- Необходимо учитывать автокорреляции между нахождением высокоэнергетичной струи в области малых быстрот и измерением центральности в области больших быстрот

π⁰: d+Au @ 200 ГэВ Ilkka Helenius, Kari J. Eskola et al. arXiv 1205.5359

* Модельные расчеты предсказывают слабую зависимость R_{dA} от центральности

γ_{dir}: Au+Au @ 200 ГэВ & Pb+Pb @ 2.76 TeV

✤ PHENIX:

- ✓ NLO pQCD описывает выход прямых фотонов в р+р
- ✓ Избыточный выход прямых фотонов $1 < p_T$ (GeV/c) < 3 относительно (p+p)·N_{coll}

✤ ALICE:

✓ Избыточный выход прямых фотонов относительно NLO pQCD

♦ Объясняется тепловым излучением из образовавшейся среды → возможность оценить температуру образующейся среды

γ_{dir}: Au+Au @ 200 ГэВ & Pb+Pb @ 2.76 TeV

♦ Экспонента:
✓ $T_{ALICE} = 304 \pm 51 \text{ M}_{3}B (0-40\%)$ ✓ $T_{PHENIX} = 221 + 27 \text{ MeV} (0-20\%)$

✤ PHENIX:

γ_{dir}: d+Au @ 200 ГэВ

Умеренное влияние СNM эффектов на выход прямых фотонов в d+Au

Cronin: initial m.s. or recombination?

♦ Рекомбинация партонов (R. Hwa, Eur.Phys.J.C43:233(2005))
 → меньший эффект для фотонов по сравнению с пионами

* В пределах ошибок измерений эффект одинаков

Кварконий - пробник КГП

J/ Ψ : Au+Au, $\sqrt{s_{NN}} = 39-200$ ГэВ

Нет прямой зависимости между энергией взаимодействия тяжелых ядер и степенью подавления чармония

Необходимо учитывать дополнительные эффекты:

- ✓ регенерация
- CGC, nPDF

J/Ψ, распределение по быстроте: d+Au @ 200 ГэВ

 Данные позволяют охватить большой диапазон по х и Q²

Ј/Ѱ, распределение по р_т: d+Аu @ 200 ГэВ

18.06.2013

 Учитываются многократные мягкие перерассеяния и энергетические потери в начальном состоянии
 → согласие с экспериментом

◆ Выход Ψ' подавлен в ~ 3 раза сильнее в центральных столкновениях

Ψ': d+Au @ 200 ГэВ

- ✤ Относительный выход Ψ'/ J/Ψ линейно зависит от множественности (y=0) и не зависит от энергии взаимодействия. PHENIX следует общей тенденции

Ψ', χ_c, J/Psi: d+Au @ 200 ГэВ

R_{dA} чармония зависит от энергии связи

Y(1S+2S+3S): d+Au @ 200 ГэВ

- IQCD расчеты предсказывают различную энергию связи для Y(1S), Y(2S) и Y(3S)
- CMS, Pb+Pb @ 2.76 T₃B $(p_T^{\mu} > 4 \Gamma_3 B/c, |\eta| < 2.4):$

$$\begin{split} &\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{\rm Pb+Pb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{p+p}} - 0.31^{+0.19}_{-0.16}({\rm stat}) \pm 0.03({\rm syst}) \\ & {\sf R}_{\rm PbPb}({\rm Y}(1S)) \sim 0.6 \end{split}$$

- ✤ Е772, р+А @ 38.8 ГэВ:
 - ✓ Y(1S) и Y(2S+3S)
 - Сравнимое подавление для всех состояний

Заключение

Измерения в p(d)+А абсолютно необходимы для интерпретации и численного описания эффектов, связанных с образованием плотной и горячей среды в A+A

→ программа будет продолжена (p+Au, p+Cu, p+Si @ 200 ГэВ)