

The PANDA Experiment: Exploring the Emergence of Structure in Matter

J. Ritman Forschungszentrum Juelich

Hadron Physics with PANDA

- QCD well understood at high Q2 Emergence of eff. DoF at low Q2
- Study of the strong interaction in the transition region
- Phenomena appear that are hard ^{0.6}
 to predict from QCD:
 e.g. confinement, nature of
 hadrons, hadronic masses...
 0.2

How Do We Study the Hadrons?

- Hadron Structure: Hard (virtual) photons, typically accessed via leptons, allow us to measure the constituents
 - Generalized parton distribution
 - Drell-Yan processes
 - Time-like form factor of the proton
- Hadron Spectroscopy: Excitation spectrum accesses rare quark/gluon configurations
 - Search for glueballs, hybrids, molecules, tetraquarks ..
 - Baryon spectroscopy
 - In-medium effects
- Hadron Interactions: Pion/Kaon reactions, as well as Hyperons and Hypernuclei provide information about the strong force
 - Double hypernuclei

Hadron Structure with Electromagnetic Probes

Time-Like & Space-Like EM Form Factors

• Imaginary part of Time-Like form factors vanishes for $q^2 \rightarrow +\infty$

Proton EM Form Factors in Time-Like Region JÜLICH

Goal of PANDA Measurements

Extract Time-Like |GE| and |GM| for proton up to 14 (GeV/c)2 from lepton angular distributions in $\overline{p}p \rightarrow e+e$ - reaction and measure Geff up to 30 (GeV/c)2

Two major challenges:

 ✓ Decrease of sensitivity to GE with increasing q2

✓ Huge hadronic background σ (pp →π+π-) / σ (pp →e+e-) ~ 106

Counting Rate and Sensitivity to |GE|

M. Sudol et al. EPJA 44 (2010) 373

Rejection of \overline{p}p \rightarrow \pi + \pi- Background

s > 6 (GeV/c)2 :

New measurements of $\bar{p} p \rightarrow \pi + \pi$ will be provided by PANDA (also important for pQCD mechanism studies)

parametrization of CERN data for p p $\rightarrow \pi + \pi$ -

counting rules (Ong et Van de Wiele, IPNO-DR-08-01)

or Regge trajectories (idem, EPJA46 (2010) 291).

s < 6 (GeV/c)2 : Legendre polynomial fits

Time-Like Form Factor Measurement with PANDA : Estimates of Precision

L =2 fb-1 *Sudol et al. EPJA 44 (2010) 373*

Courtesy of S. Pacetti

E. Tomasi-Gustafsson and M.P. Rekalo, PLB504,291 E. Tomasi-Gustafsson, arXIv:0907.4442

Time-Like Form Factor Measurement with PANDA : Estimates of Precision

L=2 fb-1

Sudol et al. EPJA 44 (2010) 373

Precise determination of |GE| and | GM | up to 14 (GeV/c)2 Geff up to 30 (GeV/c)2 : transition towards perturbative QCD

-VDM: F. Iachello et al., PLB43, 171 (1973)

2γ Contributions and Radiative Correction JÜLICH

- Advantage of annihilation reactions $pp \leftrightarrow e+e-$ The e+ and e- angular distributions are measured in the same experiment

PANDA measurements are sensitive to *odd cos* θ terms d σ /dcos θ e ~ A (1+ b cos θ esin2 θ e + c cos2 θ e+..) with b=5% or more

(M. Sudol et al EPJA 44(2010) 373).

Hadron Spectroscopy with Antiproton Annihilation

Why Antiprotons?

- difficult to make
- BUT:
- gluon rich process
- gain ~2 GeV in annihilation, reduced momentum transfer
- all fermion-antifermion quantum numbers accessible
- very high resolution in formation reactions
- high angular momentum accessible

Particle production in pp collisions

All JPC allowed for (qq) accessible in pp

c.f.

Example: xc1,2

$$e^+e^- \rightarrow \psi^+ \rightarrow \gamma \chi_{1,2} \rightarrow \gamma (\gamma J / \psi) \rightarrow \gamma \gamma e^+e^-$$

Invariant mass reconstruction depends
on the detector resolution ≈ 10 MeV

Formation:

$$\overline{p} p \rightarrow \chi_{1,2} \rightarrow \gamma J / \psi \rightarrow \gamma e^+ e^-$$

Resonance scan: Resolution depends on the beam resolution

E760@Fermilab ≈ 240 keV PANDA ≈ 30 keV

Charmonium Spectroscopy

- open questions below DD threshold: widths, branching
- new "XYZ" states (Belle, BaBar, CLEO, CDF, D0, …)
- new degrees of freedom: molecules, tetraquarks, gluonic excitations?
- conventional states above DD
- high L states: access in pp but not in e+e-

in addition to many more open charm states

∆M (GeV/c²)

X(3940)

PRL 98,082001 (2007)

Y(4350)

PRL 98,212001 (2007)

Z1- & Z2-

PRD 78,072004 (2008)

X(3872)

Z(4430)-

PRL 100,142001 (2008)

Jim Ritman

1.1

Candida

Y(3940)

PRL 94,182002 (2005)

4080 Μ(ωJ/ψ) (MeV)

Y(4008)

PRL 99,182004 (2007)

I = = = Solution

M(π^{*}π⁻J/ψ) (GeV/c²)

Y(4140)

PRL 102,242002 (2009)

4280

_{зо} ь)

3880

How can PANDA contribute?

- simulation studies for several channels and vs:
- $J/\psi\pi+\pi-$, $J/\psi\pi0\pi0$, $\chi c\gamma \rightarrow J/\psi\gamma\gamma$, $J/\psi\gamma$, $J/\psi\eta$, $\eta c\gamma$
- direct formation in pp: line shapes !
- d target: pn with p spectator tagging, e.g. Z-(4430)

E (MeV)

-2

Beyond standard quark configurations

• QCD allows much more than what we have observed:

hadronic molecule: bound state of two mesons

Courtesy C. Hanhart

Exotics production in pp collisions

Production: all JPC accessible Hybrids Gluon 1^{-+} 1^{+-} ⁵ ^{4.5} ^{3.5}

JPC exotic

Exotic JPC would be clear signal

G.Bali, EPJA 1 (2004) 1 (PS)

Open charm: The Ds spectrum

B. Aubert et al. (BaBar Collab.), Phys. Rev. D 74 (2006) 032007

- new narrow states Ds*(2317) and Ds*(2460) seen by BaBar, Belle, CLEO
- masses significantly lower than quark model expectation
- states are just below DK and D*K threshold
- interpretation unclear: DK / D*K molecules, tetraquarks, chiral doublers, ...?

Ds0*(2317) Theoretical Predictions

Approach	Γ(Ds0*(2317) → Dsπ0) (keV)
M. Nielsen, Phys. Lett. B 634, 35 (2006)	6 ± 2
P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003)	7 ± 1
S. Godfrey, Phys. Lett. B 568, 254 (2003)	10
Fayyazuddin and Riazuddin, Phys. Rev. D 69, 114008 (2004)	16
W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003)	21.5
J. Lu, X. L. Chen, W. Z. Deng and S. L. Zhu, Phys. Rev. D 73, 054012 (2006)	32
W. Wei, P. Z. Huang and S. L. Zhu, Phys. Rev. D 73, 034004 (2006)	39 ± 5
S. Ishida, M. Ishida, T. Komada, T. Maeda, M. Oda, K. Yamada and I. Yamauchi, AIP Conf. Proc. 717, 716 (2004)	15 - 70
H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003)	10 - 100
A. Faessler, T. Gutsche, V.E. Lyubovitskij, Y.L. Ma, Phys. Rev. D 76 (2007) 133	79.3 ± 32.6
Y. I. Azimov and K. Goeke, Eur. Phys. J. A 21, 501 (2004)	129 ± 43 (109 ± 16)
M.F.M. Lutz, M. Soyeaur, arXiv: 0710.1545 [hep-ph]	140
Feng-Kun Guo, Christoph Hanhart, Siegfried Krewald, Ulf-G. Meißner Phys Lett. B 666 (2008) 251-255	$180\pm40\pm100$

Method: Threshold Scan

• reaction:
$$\bar{p}p \rightarrow D_s^{\pm} D_{s0}^* (2317)^{\mp}$$

$$\frac{\sigma(s)}{|M^2|} = \frac{\Gamma}{4\pi\sqrt{s}} \int_{-\infty}^{\sqrt{s}-m_{D_s}} \mathrm{d}m \frac{\sqrt{\left(s - (m + m_{D_s})^2\right)\left(s - (m - m_{D_s})^2\right)}}{\left(m - m_{D(2317)}\right)^2 + (\Gamma/2)^2}$$

- excitation function only depends on m and Γ of Ds(2317)
- experimental accuracy determined by beam quality (Δp, σp/p), not by detector resolution

Simulation Results: Energy Scan

Jim Ritman

26

Hadron Interactions: Double Strange Hypernuclei

Production Mechanism and Detection Strategy

Instrumentation

FAIR and the PANDA Detector

Jim Ritman

30

Facility for Antiproton and Ion Research

IÜLICH

Facility for Antiproton and Ion Research

Areal view May 2013

HESR with PANDA and Electron Cooler

HESR
575 m

575 M	Circumference
1.5 – 15 GeV/c	Momentum
up to 9 GeV/c	Electron Cooling
Full range	Stochastic Cooling

Electron Cooler, HESR Injection energies

- HESR Injection energies (3.5 GeV/c)
- 2 MV x 1 A
- Installation in COSY in spring 2013

PANDA Detector Characteristics

Antiproton momentum: from 1.5 to 15 GeV/c Lmax ~ 2 · 1032 cm-2s-1 $\rightarrow 0.5$ fb-1 / mo. high rate capability: 2 · 107 s-1 interactions nearly 4π solid angle needed to measure full decay chain and for PWA high acceptance $\pi\pm$, K±, p±, e±, $\mu\pm$, γ identification PID in all regions displaced vertex detection – vertex info for D, KS, Σ , Λ (c τ = 317 μ m for D±) photon detection from 10 MeV to 10 GeV

efficient event selection & good momentum resolution

PANDA Detector Scenario

- High background: exclusive event reconstruction essential
 → simultaneous neutral and charged particles
 → close to full 4π acceptance
- Glueballs/Hybrids/etc.: high kaon yield
 > PID over full forward hemisphere
- Resonances/Molecular states/etc.: concurrent measurement of different decay branches
 → MVD and EMC
- Electromagnetic final states: e+/- and μ+/ → EMC and Muon Detectors

The PANDA Collaboration

517 Members from 67 Institutes 18 Countries Australia, Austria, Belarus, China, France, Germany, India, Italy, Poland, Romania, Russia, Spain, Sweden, Switzerland, Thailand, The Netherlands, USA, UK

