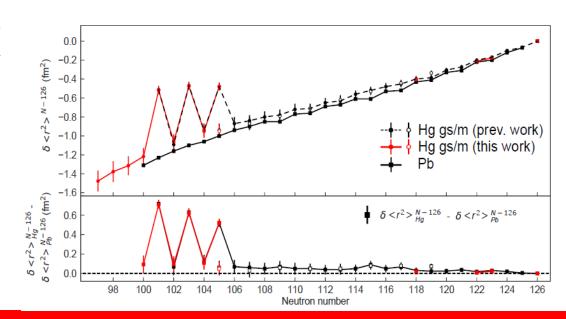


ОТДЕЛЕНИЕ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

Эффект чередования форм в нейтронно-дефицитных изотопах ртути

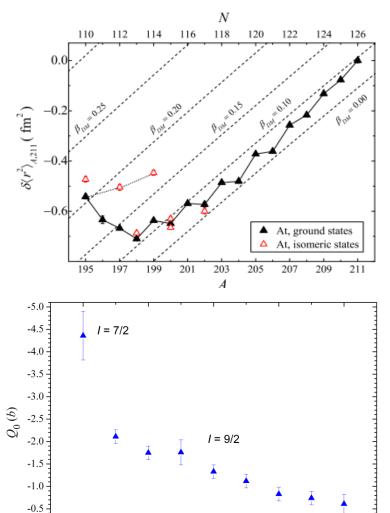
Characterization of the shape-staggering effect in mercury nuclei

B.A.Marshol*, T.Day Goodacre^{1,2,18}, S.Sels^{©,3,18}, Y.Tsunoda⁴, B.Andel^{©,5}, A.N.Andreyev^{6,7}, N.A.Althubitl², D.Atanasov⁸, A.E.Barzakh², J.Billowes², K.Blaum⁸, T.E.Cocolios^{2,3}, J.G.Cubiss^{©,6}, J.Dobaczewski⁶, G.J.Farooq-Smith²³, D.V.Fedorov^{©,6}, V.N.Fedosseev^{©,6}, K.T.Flanagan², L.P.Gaffney^{©,3,10}, L.Ghys³, M.Huyse³, S.Kreim³, D.Lunney¹¹, K.M.Lynch¹, V.Manea³, Y.Martinez Palenzuela³, P.L.Molkanov⁶, T.Otsuka³^{3,12,13,14}, A.Pastore⁶, M.Rosenbusch¹^{3,15}, R.E.Rossel¹, S.Rothe¹², L.Schweikhard¹⁵, M.D.Seliverstov⁶, P.Spagnolettì¹0, C.Van Beveren³, P.Van Duppen³, M.Veinhard¹, E.Verstraelen², A.Welker¹⁶, K.Wendt¹⁷, F.Wienholtz¹⁶, R.N.Wolf³, A.Zadvornaya³ and K.Zuber¹⁶


In rare cases, the removal of a single proton (Z) or neutron (N) from an atomic nucleus leads to a dramatic shape change.

Consequently, the ground states of most isotopes in the nuclear

Теоретический анализ данного эффекта в рамках наиболее продвинутых оболочечных расчетов методом Монте-Карло (диагонализация матрицы размерностью $\sim 10^{41}$) позволил предложить уточненный механизм эволюции формы ядра.


Marsh, B. A. et al., *Nat. Phys.* https://doi.org/10.1038/s41567-018-0292-8 (2018).

Измерение изменений среднеквадратичных зарядовых радиусов и электромагнитных моментов для $^{177-185}$ Hg на установке ISOLDE (CERN) позволило установить, что эффект чередования формы (близкая к сферической для четных изотопов и сильно деформированная для нечетных) наблюдается только при числе нейтронов 100 < N < 106.

Сосуществование форм в ядрах астата

195

199

203

N

207

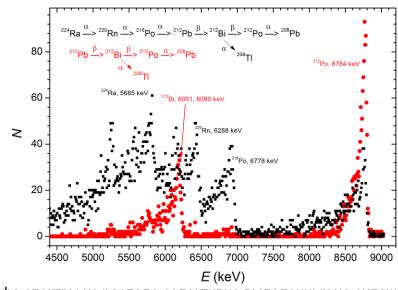
211

Обнаружены значительные различия величин зарядовых радиусов для основных и изомерных («внедренных», $I^{\pi} = 1/2^+$) состояний ядер 197,199 At, что свидетельствует о сосуществовании форм в этих ядрах.

Рост радиусов изотопов At при уменьшении числа нейтронов при A < 198 свидетельствует о плавном росте деформации этих ядер. При этом, в отличие от ядер полония с тем же числом нейтронов, где впервые был обнаружен аналогичный рост, ядро 195 Atm (N = 110) можно считать сильно деформированным исходя из измеренных значений его квадрупольного и магнитного моментов (для ядер Po с 113<N<108 характерно смешивание сферических и деформированных конфигураций).

О резком изменении структуры ядер At при переходе к N = 110 (A = 195) свидетельствует также скачок величины квадрупольного момента при этом значении N (см. рис. 2)

J. G. Cubiss et al., Phys. Rev. C 97, 054327 (2018).

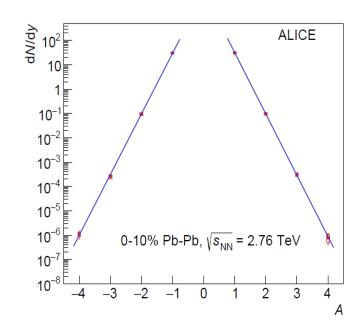

Новый метод получения изотопного генератора альфа-эмиттера ²¹²Pb/²¹²Bi

Назначение установки

Для получения на строящемся в НИЦКИ-ПИЯФ радиоизотопном комплексе РИЦ-80 радионуклидов, распадающихся альфа распадом, разработан новый высокотемпературный, высоковакуумный метод выделения радионуклидного генератора альфа- эмиттера Pb- 212 /Bi-212 из мишени карбида тория высокой плотности.

Прототип мишенного устройства для высокотемпературного выделения получаемых радионуклидов

Альфа спектры из распада селективно выделенных на охлаждаемый коллектор ²¹²Pb (1230 °C, красные точки) и ²²⁴Ra (1500 °C, черные точки) из нового мишенного материала карбида тория (ThC) высокой плотности


Преимущества:

- Отсутствие ЖРО (жидких радиоактивных отходов)
- Использование одной и той же мишени для постоянного накопления целевых радиоизотопов
- Для накопления ²¹²Pb и ²²⁴Ra может быть использована мишень после ее долгой (≥10 сут) работы на пучке для получения других радионуклидов

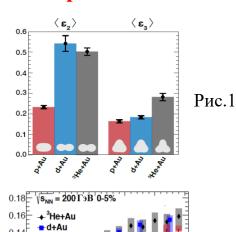
Первое наблюдение ядер He-4 и анти-He-4 в PbPb столкновениях на Большом Адронном Коллайдере

В эксперименте ALICE при изучении свойств кварк-глюонной плазмы (КГП), созданной в центральных столкновениях ядер свинца на БАК, впервые зарегистрировано 23 события с рождением ядер и антиядер Не-4. Антигелий-4 - самое тяжелое ядро антиматерии, зарегистрированное к настоящему времени в лабораторных условиях. На рисунке показаны измеренные в эксперименте ALICE выходы легких ядер и антиядер. равенства выходов ядер и антиядер с одинаковым массовым числом А следует, что барионный химический потенциал в момент формирования этих ядер при адронизации КГП близок Фактор подавления, как плата за присоединение к нулю. 1/300. Температура дополнительного нуклона, примерно химической заморозки находится в интервале 135 МэВ – 177 МэВ. Полученные результаты исключительно важны для моделей пространственно-временной развития ЭВОЛЮЦИИ кварк-глюонной плазмы на стадии адронизации и химической заморозки, а также, для понимания механизмов нуклеосинтеза.

Литература

"Production of He-4 and anti He-4 in PbPb collisions at 2.76 TeV at the LHC"

ALICE Collaboration


Nucl.Phys. A971 (2018) 1-20).

Образование капель кварк-глюонной плазмы (КГП) в столкновениях малых ядерных систем в эксперименте PHENIX на коллайдере RHIC

Коллективные потоки частиц, рождающихся в столкновениях тяжелых ионов, являются одним из признаков образования сильновзаимодействующей КГП, обладающей свойствами практически идеальной жидкости. В эксперименте PHENIX проведена программа "сканирования по геометрии" при энергии взаимодействия $\sqrt{s_{NN}} = 200 \, \Gamma$ эВ. Три взаимодействующие системы $(p+Au, d+Au u ^3He+Au)$ обладают различными начальными области перекрытия геометриями ядер, которые **МОЖНО** характеризовать пространственными эксцентриситетами второго и порядка, вычисленными в модели Глаубера (Рис.1). третьего Измерение эллиптического v_2 (Рис.2) и триангулярного v_3 (Рис.3) потоков для заряженных адронов в 0-5% наиболее центральных p+Au, d+Au и ^3He+Au столкновениях показало, что потоки v_2 и v_3 той следуют пространственные же иерархии, ЧТО И Полученные эксцентриситеты. результаты указывают на образование капель кварк-глюонной плазмы в нуклон-нуклонных столкновениях с высокой множественностью при взаимодействии малых ядерных систем с тяжелыми ядрами. В процессе эволюции отдельные капли сливаются, сохраняя анизотропию.

["Creating small circular, elliptical, and triangular droplets of quark-gluon plasma" PHENIX Collaboration, e-Print: arXiv:1805.02973 [nucl-ex], accepted to Nature Physics, 2018]

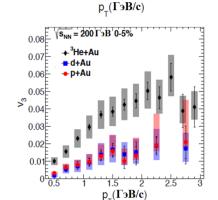
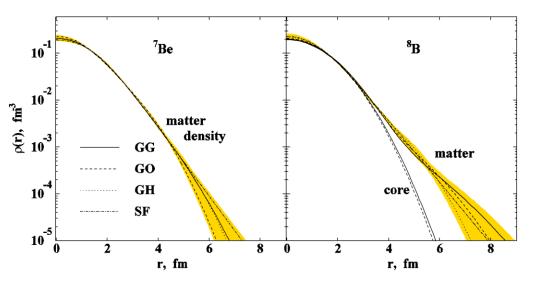
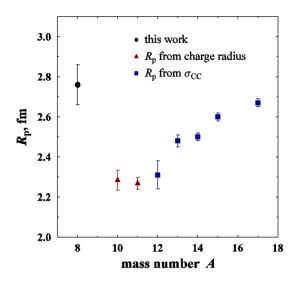



Рис.3



Распределения ядерной материи в протоноизбыточных ядрах ⁷Ве и ⁸В

С помощью созданного в ПИЯФ спектрометра ИКАР в ядерном центре **GSI** измерены сечения малоуглового упругого рассеяния протонов на ядрах ⁷Ве и ⁸В при энергии **700** МэВ. Анализ измеренных сечений позволил определить в исследованных ядрах пространственные распределения ядерной материи. Впервые у ядра ⁸В определен зарядовый радиус. Показано наличие у ядра ⁸В существенного протонного гало.

Распределения ядерной материи в ядрах ⁷Ве и ⁸В.

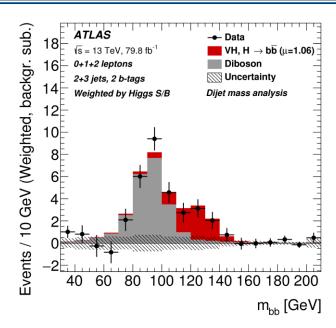
Радиусы протонного распределения в ядрах изотопов В. Кружок (слева) — результат данной работы.

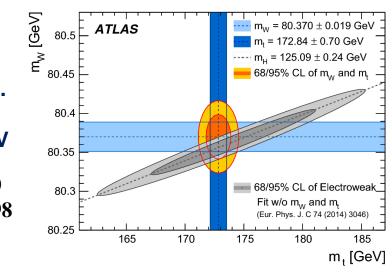
G. Korolev et al., Phys. Lett. B 780, 200 (2018).

Прямое наблюдение распада бозона Хиггса на пару b – кварков: $H ightarrow b \overline{b}$

Полученные значения значимости (σ) и силы сигнала (μ) по результатам Run I и Run II:

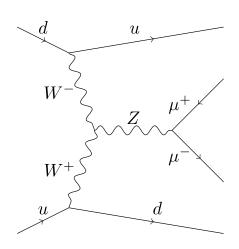
ATLAS
$$\sigma = 5.4$$
, $\mu = 1.01 \pm 0.20$ CMS $\sigma = 5.6$, $\mu = 1.04 \pm 0.20$

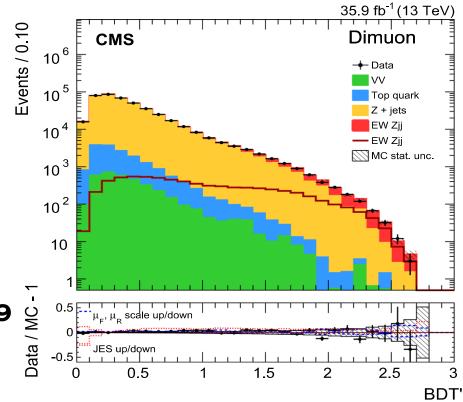

Phys. Lett. B 786 (2018) 59 Phys.Rev.Lett. 121 (2018) 121801


Измерение массы *W* **бозона**

Значение массы, измнеренное в эксперименте ATLAS $m_W = 80370 \pm 19$ MeV, (CM: 80356 ± 8 MeV). Разница масс W+ и W- бозонов:

$$m_{W_{+}} - m_{W_{-}} = -29 \pm 28 \text{ MeV}$$


Eur.Phys.J. C78 (2018) no.2, 110 Eur.Phys.J. C78 (2018) no.11, 898



CMS 13 ТэВ: Электрослабый процесс **Z + 2** струи

CMS COLLABORATION EUR.PHYS.J. C78 (2018) 589 CERN-EP-2017-328



$$\sigma(EW \ \ell\ell jj) = 534 \pm 20 \, (stat) \pm 57 \, (syst) \, fb = 534 \pm 60 \, (total) \, fb$$
 SM prediction $\sigma_{LO}(EW \ \ell\ell jj) = 543 \pm 24 \, fb$

Observation of excited states of the Ω_c baryon

Among all c-baryons, Ω_c (css) remained the only baryon with no exited states observed before LHCb. The LHCb collaboration has performed the searches for the exited states in the $\Xi_c^+K^-$ decay channel. The measured $\Xi_c^+K^-$ mass distribution is shown in Fig. 1 where five narr_ow structures are observed.

Fig. 1. Distribution of the reconstructed $\Xi_c^+ K^-$ invariant mass. The solid (red) curve shows the result of the fit, and the dashed (blue)

Also, it is found that the fit improves if an additional broad Breit-Wigner function is included in the $3188 \text{ MeV}/c^2$ mass region. The parameters of the observed resonances are presented in Table 1.

The results of the fit to the $\Xi_c^+K^-$ distribution for the mass, width, yield, and significance for each of the resonances. Yields for the feed-down contributions of the $\Omega_c(3066)^0$, and $\Omega_c(3119)^0$ resonances decaying into $\Xi_c^{+}K^-$ final state with the partially reconstructed Ξ^+ are also presented

Res.	Mass, MeV/c ²	Width, MeV	Yield	Νσ	Feed down yield
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1 \pm 0.4$	$4.5 \pm 0.6 \pm 0.3$	$1300 \pm 100 \pm 80$	20.4	
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1 \pm 0.4$	$0.8 \pm 0.2 \pm 0.1$	$970 \pm 60 \pm 20$	20.4	
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3 \pm 0.4$	$3.5 \pm 0.4 \pm 0.2$	$1740 \pm 100 \pm 50$	23.9	$700 \pm 40 \pm 140$
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5 \pm 0.4$	$8.7\pm1.0\pm0.8$	$2000 \pm 140 \pm 13$	21.1	$220 \pm 60 \pm 90$
			0		
$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9 \pm 0.4$	$1.1 \pm 0.8 \pm 0.4$	$480 \pm 70 \pm 30$	10.4	$190\pm70\pm20$
$\Omega_c(3188)$	$3188 \pm 5 \pm 13$	$30 \pm 15 \pm 11$	$1670 \pm 450 \pm 3$	6	
0			60		

This discovery leads to a wide theoretical discussion about the nature of the observed resonances. In some models (V.Petrov), the narrowest of them are interpreted as pentaquark states.

Reference Phys. Rev. Lett. 118, 182001 (2017)